The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project will be to create a lightweight and efficient rotary electroadhesive clutch that enables improved robotic hardware performance across the manufacturing, logistics, and medical industries. Despite decades of research and commercial effort, society has yet to realize the widespread availability of affordable robots that can safely work alongside humans and assist them in their daily lives. A central obstacle in achieving this vision is the prohibitive cost and poor performance of actuators. Efficient, lightweight clutches that can improve robot operation time and safety at a competitive price are a gateway to the proliferation of human-assistive robotic systems into everyday life. For example, inexpensive motion assistance exoskeletons could improve the quality of life for millions of physically impaired people who are otherwise unable to engage in normal daily activities. Affordable robots could also increase access to expensive labor-intensive services, such as daily physical rehabilitation or full/part-time in-home care. This Small Business Innovation Research (SBIR) Phase II project will be used to develop new materials understanding and correlate parameters such as morphology, dielectric thickness, and chemical modification to rotary electroadhesive clutch performance. The materials will be assessed for electrical and physical properties, as well as ease of incorporation into electroadhesive clutch assemblies and lifetime. Selecting optimal materials will improve fundamental performance while continuing to lower the weight, footprint, and energy consumption of rotary clutch designs. These research and development activities will de-risk the technology and enable the construction of a production-ready product. To efficiently achieve these goals, testing capabilities will be improved through the development of automated test stands to aid in rapid materials assessment, lifetime testing, and iterative design. For fundamental materials understanding, novel testing protocols will be developed that assess the electrical and wear properties of new materials, producing a widespread scientific impact in fields such as corrosion, coatings, and adhesion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.