SBIR-STTR Award

A Low-Cost Real-Time Bio-Electrochemical Nitrate Sensor for Surface Water Monitoring
Award last edited on: 12/28/2023

Sponsored Program
SBIR
Awarding Agency
NSF
Total Award Amount
$754,865
Award Phase
2
Solicitation Topic Code
BC
Principal Investigator
Justin D Buck

Company Information

Cambrian Innovation Inc (AKA: IntAct Labs LLC)

27 Drydock Avenue Floor 2
Boston, MA 02210
   (617) 307-1755
   info@cambrianinnovation.com
   www.cambrianinnovation.com
Location: Single
Congr. District: 08
County: Suffolk

Phase I

Contract Number: 1046608
Start Date: 1/1/2011    Completed: 12/31/2011
Phase I year
2010
Phase I Amount
$180,000
This Small Business Innovation Research (SBIR) Phase I project will demonstrate the feasibility of a revolutionary, low-cost, real-time, amperometric sensor technology based on bio-electrochemical systems. The proposed device utilizes exo-electrogen microbes to detect levels of target substances, primarily nitrate and oxygen. The sensor takes advantage of highly specific biological processes and the capability of certain microbes to transfer electrical current directly to electrodes. Because of the nature of the design, the sensor is low cost, requires no additional power, and continuously self-regenerates. These capabilities will enable sensors to be deployed in remote locations to monitor nitrate and oxygen levels in a network spanning large geographical regions. The broader/commercial impacts of this research are in the environmental management, agricultural, and defense sectors. Nitrate levels in US waterways have increased dramatically in the past half-century. Nitrate in surface water run-off from agriculture activities is a particularly serious environmental problem, creating large anoxic dead zones and straining fisheries. Tracing this pollutant is difficult because existing sensors are very expensive or short-lived and cannot cover wide areas. Maintaining optimized levels of nitrate in sustainable precision agriculture not only reduces environmental impact, it is also a critical economic issue - nitrate monitoring in run-off from cropland can help to maximize yields while minimizing expensive fertilizer inputs. Finally, once proven for nitrates, the patented sensor concept has the potential to be adapted to other substances by utilizing additional capabilities of exo-electrogenic bacteria, thus producing a new class of amperometric sensors based on bio-electrochemical phenomena.

Phase II

Contract Number: 1230363
Start Date: 8/15/2012    Completed: 5/31/2017
Phase II year
2012
(last award dollars: 2015)
Phase II Amount
$574,865

This Small Business Innovation Research (SBIR) Phase II project will continue the development of a low-cost real-time bio-electrochemical nitrate sensor for surface water monitoring initially funded as an NSF SBIR Phase I project. In Phase I, Cambrian Innovation demonstrated the feasibility of a bio-electrochemical sensor for measuring the level of nitrate in a water sample. Following the initial proof-of-principle, a microscale sensor prototype was developed and tested. The Phase II project will continue the development of the bio-electrochemical nitrate sensor to reach a detection level of less than 1 mg-N/L with a stable deployment of 6 months. Phase II development will optimize the sensor architecture and operational conditions for improved performance and develop a long-lasting substrate for microbial growth. Phase II will also include the design and construction of prototype electronic components, including the signal processing algorithm for interpreting the signal emitted by the bio-electrochemical cell. Finally, the sensor performance will be validated by extensive laboratory testing under controlled conditions followed by the initiation of field testing. Upon Phase II completion, Cambrian will be prepared for final development and testing of a first-generation nitrate sensor system in a Phase IIB project. The broader impact/commercial potential of this project addresses environmental nitrogen management, one of the most pressing issues facing society in the 21st century. Nitrate contamination of waterways has become a high profile topic due to anoxic dead zones and drops in fish populations. A significant portion of this environmental impact has been attributed to agricultural run-off (USGS, DOI, 2000). The need for regulation, monitoring, enforcement, and remediation of nitrate pollution is limited by a lack of cost-effective technology for continuous monitoring of nitrate in the environment. Simultaneously, an increased thrust in precision agriculture has been fueled not only by environmental concerns but also by the dramatic improvements in crop yield and quality that can be obtained through careful control of nutrient addition. The development of a low-cost real-time nitrate sensor will transform the management of agricultural facilities, resulting in dramatic improvements in fertilizing efficiency and the environmental impact of the food production industry. Cambrian Innovation is developing a bioelectrochemical nitrate sensor to fill this unmet need and establish a new paradigm in environmental sensing.