This Small Business Technology Transfer (STTR) Phase II project aims to develop a Modulation-Assisted Machining (MAM) system with novel capabilities for micro/meso-scale deep-hole drilling of biomedical components. The system is structured around a new device; an accessory developed for computer numerically controlled (CNC) machine tools. This new device superimposes a low-frequency sinusoidal modulation onto machining processes enabling controlled chip formation and easy disposal, enhanced lubrication of tool-chip contact, reduces energy consumption, and, potentially, a reduction in tool wear. When implemented in the appropriate system framework, unprecedented increases in productivity and efficiency of deep-hole drilling processes are envisaged. The broader impact/commercial potential of this project will be commercialize MAM technology in manufacturing of biomedical components and related applications in automotive and aerospace fluid systems manufacturing. Complemented by a strong education and training program. By driving the development of a class of clean machining processes with reduced effluent streams and energy consumption, and improved efficiency, this project will impact sustainable manufacturing for the discrete products sector, with broad societal benefits.