SBIR-STTR Award

Integrated Maglev Pump-Oxygenator for Respiratory Support
Award last edited on: 5/1/19

Sponsored Program
STTR
Awarding Agency
NIH : NHLBI
Total Award Amount
$1,662,467
Award Phase
2
Solicitation Topic Code
-----

Principal Investigator
Kurt A Dasse

Company Information

Levitronix LLC (AKA: Pharos LLC)

45 First Avenue
Waltham, MA 02451
   (781) 622-5070
   ussales@levitronix.com
   www.levitronix.com

Research Institution

University of Maryland at Baltimore

Phase I

Contract Number: 1R41HL084807-01
Start Date: 4/5/06    Completed: 3/31/10
Phase I year
2006
Phase I Amount
$266,988
The death rate due to respiratory disease has increased nearly 20% in the United States since 1979, surpassing virtually all other types of disease. Adult respiratory distress syndrome (ARDS) alone afflicts approximately 150,000 patients every year with a mortality rate between 30 and 70%. Current treatment is limited to extracorporeal membrane oxygenation (ECMO), but ECMO systems are generally assembled from multiple, unmatched components to create a pump-oxygenator circuit. These circuits result in higher than desired priming volume and membrane surface area because of non-optimized blood flow dynamics. In order to overcome these limitations, we have proposed the development of a novel artificial respiratory device capable of sustained respiratory support. The goal of this proposal is to develop an integrated pump-oxygenator (IPO) device, which incorporates durable membranes and magnetically levitated blood pump technology to produce a highly efficient respiratory support system with low priming volumes. Accordingly, our specific aims include the following: Specific Aim 1: Employ fluid simulation methods to model blood pumping function, gas transfer and hemocompatibility, and use these results to design and fabricate oxygenator components with optimal size and operating parameters. Specific Aim 2: Fabricate the components of the IPO prototype device for in-vitro characterization, including an evaluation of device blood flow performance. Specific Aim 3: Evaluate the device in-vitro utilizing bovine blood to assess gas exchange and the effects on blood. Specific Aim 4: Conduct in-vivo animal studies (3) in sheep to assess in-vivo hemodynamics, gas exchange and biocompatibility of the IPO device. Successful completion of this project will result in the development of a portable pump oxygenator system characterized by improved hemocompatibility, due to the use of the MagLev pump, improved oxygen efficiency, due to enhanced blood recirculation and blood flow dynamics, and ease of manufacturing, due to its modular design. We anticipate that such as system will be capable of providing long term respiratory support (weeks to months). The availably of such a device should have significant impact on reducing mortality due to severe, acute respiratory disorders

Phase II

Contract Number: 2R42HL084807-02
Start Date: 00/00/00    Completed: 00/00/00
Phase II year
2008
(last award dollars: 2009)
Phase II Amount
$1,395,479

Chronic lung disease remains America's third largest cause of death. Adult respiratory distress syndrome (ARDS) alone afflicts approximately 150,000 patients every year with a mortality rate between 30-70%. Current therapy for respiratory failure includes mechanical ventilation and extracorporeal membrane oxygenation (ECMO). Mechanical ventilation is effective for short term support, yet the sustained tidal volumes and airway pressures often used may also damage the lungs via barotrauma, volutrauma, and other iatrogenic injuries. While ECMO systems simulate physiological gas exchange, these systems are limited by the complexity of its operation, bleeding, and reduced patient mobility. These factors lead to the need for higher than desired priming volumes and membrane surface areas. In order to overcome these limitations, we propose to develop an integrated maglev pump-oxygenator (IMPO), which incorporates durable membranes and magnetically levitated blood pump technology to produce a highly efficient respiratory support system with low priming volumes. The IMPO is intended to be a self-contained blood pump and blood oxygenator assembly enabling rapid deployment for a patient requiring ECMO or trauma support for 3 to 14 days or longer. In Phase I of the project, we modeled, fabricated and tested a prototype IMPO device and assessed its gas transfer efficiency and biocompatibility in vitro and in vivo. In the current Phase II research, we intend to complete the design and validation of the IMPO device, to assess in vivo performance and biocompatibility, and to launch device readiness testing in anticipation of clinical trials. Accordingly, our specific aims include: Specific Aim 1: Design the IMPO system with optimized pump- impeller and fiber configuration to maximize oxygen transfer and biocompatibility. Specific Aim 2. Complete IMPO fabrication and perform in vitro assessment of oxygen transfer and biocompatibility. Specific Aim 3. Demonstrate hemodynamic performance and biocompatibility of the IMPO in an animal model. Successful completion of this project will result in the development of a portable pump oxygenator system characterized by improved hemocompatibility and oxygen efficiency. We anticipate that such as system will be capable of providing long term respiratory support (weeks to months) and thus should have significant impact on the reduction of mortality due to severe, acute respiratory disorders.7. Narrative Lung disease is the third largest cause of death in the United States of America, accounting for approximately 1 out of every 7 adult deaths. It is estimated that 30 million Americans are living with chronic lung disease. The current technology for respiratory failure is complex, is associated with multiple complications and is very costly. The proposed Integrated Membrane Pump Oxygenator (IMPO) is a simple, portable and affordable technology designed to provide a better option for the treatment of these patients with severe, acute potentially reversible respiratory failure.

Thesaurus Terms:
There Are No Thesaurus Terms On File For This Project.