CDMA is a successful network technology for the wireless industry which relies totally on conventional integrated circuits. The same architecture is equally appealing for telecommunications and is considered an optimum choice for next generation FTTH networks if only low cost implementations were available. The persistent high costs are driven by disparity between optical and electrical components which include WDM capability on the one hand and digital processing on the other. What is required is the ability to merge these onto a single integrated platform so that signals could remain optical at high speeds right to the point that OE conversion was essential. With both capabilities on one die, cost goes down and performance goes up. These same attributes apply to airborne communications. The security enabled is a key aspect and thus multiple recent efforts have focused on the addition of existing PIC devices to a standard CMOS platform. ODIS offers a different solution in the form of POET, a III-V complementary HFET technology on the same integrated circuit as the wavelength division components for OCDMA. This approach achieves the goal and has already solved the main issue of technology compatibility. In this SBIR , POET will be demonstrated for OCDMA.
Keywords: Serdes Wavelength Multiplexing , Serdes Wavelength Multiplexing , Thyristor Multiple Access , Modulation Doped