SBIR-STTR Award

Optical gyroscopes and accelerometers at the fundamental precision limit
Award last edited on: 9/5/22

Sponsored Program
SBIR
Awarding Agency
NASA : MSFC
Total Award Amount
$124,611
Award Phase
1
Solicitation Topic Code
S3.04
Principal Investigator
Matthias Lenzner

Company Information

Lenzner Research LLC

125 East Canyon View Drive
Tucson, AZ 85704
   (347) 301-5402
   info@lenzner.us
   www.lenzner.us
Location: Single
Congr. District: 02
County: Pima

Phase I

Contract Number: 80NSSC21C0227
Start Date: 5/13/21    Completed: 11/19/21
Phase I year
2021
Phase I Amount
$124,611
We propose the development of a novel laser-based gyro and accelerometer, pushing the sensitivity to the fundamental limit. The device is based on two correlated frequency combs of the same repetition rate, generated in a single laser cavity. Because of this correlation, while the bandwidth of a tooth of each comb is in the Megahertz range, the bandwidth of the interference is less than 1 Hertz. Dispersion control of the circulating laser pulses leads to a further increase in sensitivity of this intracavity phase interferometer. In addition to the boost in sensitivity, we will reduce the noise. The classical noise limit will be reached by classical means like a high repetition rate of the measurement and additional control loops. Applying the technique of squeezed light will then be used to approach the fundamental limit of sensitivity. The results of a Phase I study on a discrete-components OPO will be applied to two fiber-OPO prototypes in Phase II. These devices are expected to be competitive with the LIGO in terms of sensitivity. Potential NASA Applications (Limit 1500 characters, approximately 150 words): Potential NASA applications include all future inertial navigation systems for which SWaP reduction is critical. Because the fiber laser can be made of very large perimeter and is of unprecedented sensitivity, it can have applications in monitoring the motion of tectonic plates. Furthermore, the ring laser gyro and linear accelerometer can be used in aerospace navigation either stand-alone or as part of Inertial Measurement Units (IMU). With reduced payload, these instruments could also be used in small satellites. Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words): Non-NASA applications in existing markets are the uses in aerial and naval navigation, especially if included in IMU's. Emerging market segments are for instance micro- and nano- satellites (SpaceX), commercial space flight (Blue Origin, Virgin), and autonomous road vehicles. Due to the high sensitivity, the gyroscope can also have applications in observing effects in General Relativity. Duration: 6

Phase II

Contract Number: ----------
Start Date: 00/00/00    Completed: 00/00/00
Phase II year
----
Phase II Amount
----