News Article

Extracted from : Google's Solve for X program names four pioneers: Cerahelix
Date: Feb 12, 2015
Author: Barry Burd
Source: The ServerSide ( click here to go to the source)

Featured firm in this article: Cerahelix Inc of Orono, ME



The ambitious Solve for X initiative brings together entrepreneurs and experts to help solve the world's most pressing problems. On the initiative's website, Google compares Solve for X projects with the moonshots of the 1960s and 70s. Each Solve for X "moonshot" project has three characteristics:

The project addresses a big, global problem,
The project involves a radical new solution/perspective/approach to the problem, and
The project leverages a breakthrough in science or technology.

This year, Google Developer Group: GDG North Jersey is one of twelve worldwide satellite organizations that have been selected to screen applicants for the Solve for X program. As part of this screening, GDG North Jersey has received 72 moonshot proposals and has conducted four preliminary sessions in which a total of 24 innovators presented their ideas to panelists and other attendees. From these four preliminary sessions, Solve for X team members selected four finalists.

One of those finalists was Maine based, Susan MacKay and SBIR Awardee Cerahelix.

Fracking with DNA
Susan MacKay of Cerahelix described a process to unravel the potential of nanofiltration. Today's conventional ceramic filters are created by fusing ceramic particles together. With this approach, manufacturers can create a filter in which the "holes" (the places through which particles can still pass) are about one to two nanometers wide.

This brings us to fracking. With fracking, billions of gallons of water are pumped into the ground and cycled out. In fact, the fracking process deals more with water than with gas. But fracking requires water with a very high level of purity. Besides, fracking produces barium sulfate and benzene -- two substances that are dissolved in the water and that aren't filtered when the filter's holes are one to two nanometers wide. Barium sulfate carries absorbed radium, which makes it radioactive. And, if you try to re-use the water, barium sulfate has adverse effects for the fracking drilling equipment. Aromatic compounds like benzene can also cause problems when the water is re-used and benzene is also carcinogenic. MacKay's team proposes a new way to produce ceramic filters. Instead of fusing ceramic materials, the team mixes strands of DNA into an amorphous ceramic material. The DNA takes up space. When heat is applied, the DNA burns away, leaving holes in the material that are between 0.6 and 0.8 nanometers wide. These holes are small enough to filter out barium sulfate, benzene and other contaminants in water.

That's a surprising role for DNA molecule. MacKay's group uses DNA for several reasons. First, the team can use any DNA, including less expensive "natural" DNA that's extracted and then purified from blood and other sources. Next, DNA is straight. DNA doesn't coil the way other stranded molecules tend to coil, so DNA forms an optimal passage through which water can pass. Also, DNA forms liquid crystals that help orient the DNA, creating pores that transverse the membrane. At the nanoscale, these features combine to produce benefits that include low fouling, fast flux, high purity separations.

Each finalist from the GDG North Jersey program and from the eleven other regional programs will now join Google's Solve for X pioneer program.