SBIR-STTR Award

Enhancing wind-energy industry competitiveness using self-powered blade monitoring sensors
Award last edited on: 3/5/23

Sponsored Program
STTR
Awarding Agency
NSF
Total Award Amount
$256,000
Award Phase
1
Solicitation Topic Code
ET
Principal Investigator
Pranay Kohli

Company Information

ACTIVEcharge LLC

1450 S Rolling Road
Halethorpe, MD 21227
   (410) 926-0520
   contact@activecharge.us
   www.activecharge.us

Research Institution

University of Maryland at Baltimore

Phase I

Contract Number: 2131373
Start Date: 10/1/22    Completed: 9/30/23
Phase I year
2022
Phase I Amount
$256,000
The broader impact/commercial potential of this Small Business Technology Transfer (STTR) project seeks to provide an integrated monitoring solution for wind turbine blades. Continuous and reliable monitoring within the blade has been a challenge, primarily due to the lack of reliable energy for the wireless sensor (e.g., batteries need to be replaced and can be expensive and logistically difficult to replace inside the blade and power lines inside the blade are hard to install and require frequent maintenance). The proposed solution seeks to overcome current technical challenges by providing a long-lasting, maintenance-free, self-powered, integrated solution for wind turbine blade monitoring and analytics. If successfully commercialized, the solution can be deployed for autonomous sensing and smart maintenance scheduling based on big data analysis. This project may contribute to significantly and permanently reducing existing blade monitoring costs, decreasing downtime for manual monitoring and battery changes and reducing catastrophic failures with better monitoring information. By reducing the operational costs, the solution may make large-scale wind energy more competitive, reducing the world’s dependence on environmentally-harmful sources of energy. In addition, the technology may reduce the risk of injury to humans as compared to current operational processes, making wind energy safer to operate. This STTR Phase I project proposes to develop an integrated, self-powering sensor node for wind turbine blade monitoring by overcoming the following technical hurdles: lack of reliable energy for the sensor/transmitter system deep inside the blade, logistical challenges to replacing batteries inside the blade for a large number of sensors at different intervals, and difficulites with long wire-runs inside the blade as those are hard to install and require frequent maintenance. To handle these technical hurdles, this project aims to prototype an integrated, self-powered, wireless sensor node and perform field tests. This project plans to: (1) develop a mechanism for the harvester module that reliably produces electrical voltage and power regardless of the blade rotational speed, (2) develop a power management circuit with autonomous sleep/wakeup and without impedance tracking to increase charging efficiency, and (3) perform indoor and in-field test for verification of power harvesting and data transmission performance. This technolology seeks to address the fundamental weaknesses of vibration energy harvesters while integrating various components (e.g., energy harvester, sensor, transmitter, receiver, and analytics software) for an optimized solution.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria

Phase II

Contract Number: ----------
Start Date: 00/00/00    Completed: 00/00/00
Phase II year
----
Phase II Amount
----