The broader impact/commercial potential of this Small Business Technology Transfer (STTR) Phase I project is to develop a synthetic lung surfactant product for the potential treatment of serious respiratory illnesses in neonatal patients. Bronchopulmonary dysplasia affects 10,000-15,000 pre-term infants per year and has a high mortality rate. Exposure of immature lung tissue to air results in inflammation and damages lungs and airways. Decreasing bronchopulmonary dysplasia is anticipated to reduce the number of days infants spend in the hospital, the need for supplemental oxygen, and other burdens on the healthcare system. The average length of stay in the neonatal intensive care unit for an infant with bronchopulmonary dysplasia is currently 103 days.This Small Business Technology Transfer (STTR) Phase I project may result in the formulation of synthetic proteins for a bioengineered lung surfactant that contains full-length critical phospholipids and anti-inflammatory agents. Currently, bioengineered pulmonary surfactants are not as effective as animal-derived pulmonary surfactants for the treatment of illnesses related to bronchopulmonary dysplasia such as neonatal respiratory distress syndrome. The synthesis of full-length, native surfactant proteins has yet to be achieved. This research seeks to synthesize proteins which may add significant viscoelasticity to the pulmonary surfactant. The protein will be combined with major surfactant phospholipids and anti-inflammatory therapeutics at defined ratios to potentially generate fully-synthetic pulmonary surfactant preparations with anti-inflammatory properties. These surfactant formulations will be screened in vitro and in vivo using a neonatal rat hyperoxia model of bronchopulmonary dysplasia.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.