The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project will make a significant impact on science and technology, national emission reduction efforts, and the energy security of the United States. The team aims to advance science by developing a low-cost and low-emission method to produce hydrogen from hydrogen sulfide, a common waste product found throughout the energy supply chain. This technology will help to reduce greenhouse gas emissions and air pollution and contribute to improving public health in communities near industrial sites that adopt this technology. From a commercial perspective, the project has the potential to lower costs and carbon emissions of energy products made in the United States, such as hydrogen production in oil refineries. Implementing this technology would provide refineries with an onsite, low-emission source of hydrogen from waste streams, reducing costs and emissions. Ultimately, this innovation will enhance the energy security of the United States by enabling domestically produced, low-emission hydrogen energy.This Small Business Innovation Research Phase II project proposes to develop a chemical cycle that generates hydrogen from hydrogen sulfide. This effort represents an alternative hydrogen production technology tailored to large, cost-sensitive firms. Despite the significant need to decarbonize current hydrogen production, market adoption of low-emission technologies has stalled because their cost precludes use in commodity chemicals. This project aims to break this trend by using hydrogen sulfide, an abundant low-value waste stream, as a feedstock for a chemical cycle that generates hydrogen gas without significant greenhouse gas emissions. The project will have several technically challenging objectives including optimizing the process to deal with orders of magnitude higher hydrogen sulfide concentrations mixed with several highly reactive and corrosive impurities and researching and developing product separations from complex process mixtures. Additionally, the project will screen materials and catalysts and prepare the process for integration into the complex structure of a modern chemical processing facility. While already validated for other markets, the experimental and modeling tasks will test the performance of the technology on refinery waste streams and prepare for larger-scale, industrial site demonstrations. It is anticipated that the completion of this project will lead directly into a refinery site demonstration plant.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.