Phase II Amount
$1,000,000
This Small Business Innovation Research Phase II project develops a novel, double-pane window insulated with a sheet of the companyâs proprietary super-insulating aerogel. This aerogel window can achieve a center-of-glass U-factor of 0.18 BTU/h/ft2/F (1.02 Watt per square meter per Kelvin) and could enable cost-effective energy savings of 1.2 quadrillion BTUs by 2030, reducing the $20 billion in energy lost each winter in the U.S. In addition to this $3-5 billion annual market for the aerogel, this work also extends to other markets, such as transparent doors for refrigeration and ovens, and solar thermal receivers for process heat (~180 °C), where each represent significant opportunities for energy savings and greenhouse gas reductions (a $3.3 billion opportunity in commercial freezer and refrigerator doors, and a $3.0 billion opportunity in industrial process heat for solar thermal). By 2050, this new material technology could offset over 1.5 billion tons per year of carbon dioxide emissions and enable revolutionary designs for more efficient transparent insulation. The intellectual merit of this project addresses key technical barriers for inclusion of super-insulating aerogels in window insulated glass units, focusing on two main risks. This project will: (1) demonstrate scaling of aerogel sheets to window relevant sizes with adequate optical and thermal properties, focusing on producing the 14â x 20â standard test size in the window industry; (2) demonstrate the durability of the aerogel using materials with these same dimensions for windows, which require 20+ year product lifetimes. This award will explore key cost drivers for manufacturing aerogel, create aerogel-insulated window designs, and test a full-scale (greater than 4 square feet) window prototype.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review cri