The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project is to complete the development of a remote electronic stethoscope platform to help physicians and clinicians remotely diagnose and monitor a patients respiratory status quickly, conveniently, and objectively in an at-home setting. This technology will not only improve the quality of care for patients, but also enable widespread use of safely-monitored, home-based pulmonary rehabilitation, which will contribute to a reduction in patient morbidity and mortality related to respiratory diseases. The platform will also potentially enable a large collection of respiratory physiological data, providing a valuable database for clinical and scientific research as well as a framework for the use of artificial intelligence tools that may improve respiratory care. The proposed project addresses the challenge of telemonitoring the respiratory condition of patients suffering from asthma and other pulmonary diseases, such as emphysema and chronic bronchitis. The current standard of care relies on intermittent monitoring via stethoscope by a trained healthcare professional, which raises significant inter-user variability in the assessment and classification of lung sounds. The proposed project will advance noise reduction, design-to-cost, and design-for-manufacturing improvements, upgrading the backend data annotation and analysis system to ensure system scalability and validating the system usability and safety with substantial and relevant patient testing. The final smart wearable stethoscope platform will enable development of predictive algorithms that offer prolonged monitoring and recording of lung acoustic signals for improved care.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.