SBIR-STTR Award

Low-cost in-planta nitrate sensor
Award last edited on: 9/2/2023

Sponsored Program
SBIR
Awarding Agency
NSF
Total Award Amount
$1,223,683
Award Phase
2
Solicitation Topic Code
BT
Principal Investigator
Xinran Wang

Company Information

EnGeniousAg LLC

1111 Woi Road1028 Roy J. Carver Co-Laboratory
Ames, IA 50011
   (515) 708-6518
   info@engeniousag.com
   www.engeniousag.com
Location: Single
Congr. District: 04
County: Story

Phase I

Contract Number: 1914251
Start Date: 7/1/2019    Completed: 6/30/2020
Phase I year
2019
Phase I Amount
$225,000
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) project is to develop technology to address a significant pain point for farmers associated with reducing nitrogen fertilizer input costs. The technology is based on in-planta sensor technology that will allow farmers to more carefully and precisely tailor nitrogen applications to each part of each field. By monitoring nitrate accumulation within plants, farmers will receive real time readouts of which fields and which portions of fields are nutrient constrained and could produce more yield following the application of additional nitrogen fertilizer. These readouts also will identify those fields that already have sufficient nitrogen, meaning that further applications would simply reduce farmer profit and environmental sustainability. Widescale adoption and use of these sensors will not only improve farmer profitability, but also improve water quality and ecosystem health via reductions in agricultural losses of reactive nitrogen. This SBIR Phase I project proposes to develop an in-planta sensor for monitoring nitrate concentrations in plants at low cost and in near real time. Existing stalk nitrogen measurement must be conducted in a laboratory setting, requiring farmers to collect samples, mail them to a testing lab, and wait from one to two weeks to receive test results. The cost of the laboratory testing is high enough that only a fraction of farmers conducts nitrogen testing. The in-planta nitrate sensor technology will allow farmers to appropriately sample their fields and provide rapid feedback, allowing farmers (or their crop advisors) to incorporate the data into real-time decisions. This project seeks to develop an in-planta sensor through the fusion of silicon-based microelectromechanical systems (MEMS) technology and novel nanomaterials. The project will overcome major technical challenges through improving materials, fabrications, packaging, and validation, including optimizing MEMS fabrication processes to minimize sensors at low cost, improving packaging robustness for sensors, and validating sensor prototypes in a greenhouse. The in-planta sensor will directly detect stalk nitrate concentrations with minimal invasion, while being robust to interference from other ions present in the plant stem or stalk. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Phase II

Contract Number: 2155110
Start Date: 5/1/2023    Completed: 4/30/2025
Phase II year
2023
Phase II Amount
$998,683
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project is to provide farmers with a low-cost plant sensor for direct, instantaneous measurement of nitrate-nitrogen (N) levels in crop sap. Widespread adoption of the sensor could support cost-effective and improved N fertilizer management, which may increase farmers? productivity and profitability. Low-cost, instantaneous nitrate testing readouts from plant stalks will provide more actionable information to guide farmers? fertilization decisions than current methods to test N levels in soil (e.g., collect soil samples, ship them to lab, and then wait ~1 week for lab analysis). The improvements in fertilizer-management decisions, enabled by more accessible and more actionable data, have the potential to reduce total N fertilizer applications in the US by some 2 million tons annually. This large reduction in N fertilizer applications would decrease the energy footprint of agriculture, reduce emissions of nitrous oxide, a greenhouse gas 300 times as potent as carbon dioxide, and improve water quality through reductions in N runoff, improving ecosystem services and human health through improved rural water quality and the reduction in hypoxic dead zones. The proposed project represents an innovation in the function and application of an in planta nitrate sensor. The project goals are to: i) improve the sensor for reliable deployment in field measurements; ii) conduct research in farmers? fields to develop predictive models that input nitrate levels from sensor measurements of corn stalks and other data to output N fertilization recommendations; and iii) build a lab-based multi-probe nitrate sensor that extends the work to other crops in the existing plant and soil testing market. Anticipated results are that the data from the sensors will be used to build predictive models that output optimum N fertilization recommendations that will outperform conventional models. The accomplishment of this goal will lead to the commercialization of rugged low-cost sensors that provide rapid measurements of plant sap nitrate. This ability will make it possible to provide farmers with low-cost fertilizer recommendations based on data-driven, predictive modeling of N demand.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.