This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The broader impact of this Small Business Innovation Research (SBIR) Phase II project is to improve the productivity, environmental sustainability, and profitability of soybean cultivation. Soybean cultivation is a major driver of rainforest deforestation, motivating improved yields for environmental sustainability. In addition, current commercial soybean varieties are highly susceptible to Asian soybean rust, an aggressive fungal disease that is especially severe in tropical and subtropical climates and can decimate soybean yield. This disease is controlled by chemical fungicides that are expensive, pose risks to the environment and human health, and are becoming less effective as the pathogen develops tolerance to over-used chemicals. This project will enable the development of soybean varieties immune to this disease. This will reduce the need for fungicide use in soybean cultivation, reduce yield loss caused by the pathogen, and improve grower profitability. In addition, this technology can be expanded to other crops. The proposed project will result in the identification of new plant disease resistance traits with activity against the pathogen that causes Asian soybean rust. The typical plant species has hundreds of immune receptor genes which surveil for the presence of invading pathogens. Plant breeders routinely use plant immune receptor genes to develop new disease-resistant crop varieties. However, traditional methods to identify and translate these traits are time-consuming. The proposed work utilizes a rapid gene discovery platform to accelerate identification of new disease resistance traits. This project will identify and test several resistance traits. The identification and cloning of these resistance gene sequences will allow them to be quickly moved into elite soybean varieties, resulting in significant time and labor savings relative to traditional breeding. These traits can be stacked together to confer durable resistance against a broad range of Asian soybean rust strains. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.