SBIR-STTR Award

Domestically produced, novel carbon-based active anode materials for rechargeable lithium ion batteries
Award last edited on: 2/8/2023

Sponsored Program
SBIR
Awarding Agency
NSF
Total Award Amount
$1,225,000
Award Phase
2
Solicitation Topic Code
CT
Principal Investigator
Carol Hirschmugl

Company Information

COnovate Inc (AKA: SafeLi LLC)

1408 East Olive Street
Shorewood, WI 53201
   (414) 248-0846
   N/A
   conovateinc.com
Location: Single
Congr. District: 04
County: Milwaukee

Phase I

Contract Number: 1843306
Start Date: 2/1/2019    Completed: 1/31/2020
Phase I year
2019
Phase I Amount
$225,000
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) project arises from bringing new materials to market for making improved rechargeable lithium ion batteries needed by the high-tech economy, medicine, and the military (batteries are the second largest military consumable). In today's world, everything, including medical devices (e.g., wireless implants and sensors), has an app; using apps requires batteries. This project will produce "Safer Energy for the Wireless World"; the resulting improved batteries will incorporate novel, lighter, and safer (no overheating) anode materials that will charge faster and store more energy than current versions. The new anode materials are estimated upon success to yield sales of $1B during the first 10 years from selling the materials to battery manufacturers to incorporate, initially, as composites in lithium ion battery anodes, and, later, as the entire active anode. Broader societal impacts include greater safety because the batteries do not overheat; lighter, more portable devices with longer battery life and faster recharging time; reduced need for backup batteries; and diverse STEM workforce development though applied research and entrepreneurship training. This SBIR Phase I project proposes to develop safer, more powerful ways to charge electronic devices by translating fundamental research from university to industry. The opportunity arises from an NSF-supported discovery of the first solid form of carbon monoxide known, a two-dimensional crystal structure: graphene monoxide (GmO). GmO and its first proposed application for anodes in lithium ion batteries are patented. Knowledge gaps to be addressed include identifying tailored materials for optimizing batteries for electronics, using theoretical and experimental approaches to identify the maximum energy storage capacity for lithium batteries, and determining the energy and power densities and safety properties under normal and extreme operating conditions. The technology must be demonstrated in 200-mAh pouch batteries, the first milestone needed for battery manufacturers to consider adopting the innovation through licensing or sales. The second milestone is to scale up materials to produce large quantities. The overall goal is to commercialize the GmO material into an active anode or additive material for extreme batteries. In sum, the project will yield prototype batteries made from the new materials, optimize properties for specific partner applications, simulate interactions between GmO and Li, and identify pathways for scaleup of materials production.

Phase II

Contract Number: 2132769
Start Date: 9/15/2022    Completed: 8/31/2024
Phase II year
2022
Phase II Amount
$1,000,000
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) project is both to provide novel, domestically produced raw materials to the US battery supply chain and to generate affordable, safer, fast-charging, long-lasting lithium-ion batteries (LIBs) for electronics. With these raw materials, the US can manufacture lithium-ion batteries (LIBs) using its own resources; US battery manufacturers need no longer depend on foreign suppliers. The manufacturing process will employ readily available US manufacturing capabilities to generate domestically produced, value-added materials and thus strengthen the high-tech US economy that critically needs new materials for more effective energy storage. Further, the proposed materials will improve battery performance and safety, such as in wireless, battery-powered medical devices (e.g., implants and sensors) that use phone apps to monitor people's health and welfare. These apps need improved LIBs made from novel, lighter, and safer anode materials that can charge faster and store more energy than current versions. This SBIR Phase II project proposes to introduce a value-added active anode material with high-quality performance to the battery supply chain. The anode material aims to reduce the quantity of expensive—but critical—cathode materials (Ni, Co, and others) required for successful battery designs. Funding will enable upgraded production methods to produce anode material at scale, thus demonstrating how to produce a lithiated version of the anode material which will increase its desirability for battery manufacturers. The main R&D activities will improve both key desirable performance value propositions through engineering optimization approaches to synthesis and scaleup, and improve upon the currently low initial coulombic efficiency for the first charging cycle through introducing pre-lithiation and full-lithiation methodologies. Research outcomes include: (1) a value-added active anode material—with higher capacity than graphite mid potential between lithium titanate and graphite, low irreversible lithium capacity loss, and potentially increased lithium availability—to reduce the size and cost of the overall battery system per kWh, (2) a third-party demonstration of minimum viable product 200mAh batteries with superior performance, and (3) a roadmap for battery manufacturers to effectively incorporate additive amounts of the novel, lithiated material (even to completely replacing graphite) in existing battery designs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.