SBIR-STTR Award

A High Throughput Microfluidic Platform to Accelerate Biomanufacturing Transitions in Biologics Development
Award last edited on: 12/21/2023

Sponsored Program
SBIR
Awarding Agency
NSF
Total Award Amount
$1,213,939
Award Phase
2
Solicitation Topic Code
BT
Principal Investigator
Konstantinos Tsioris

Company Information

Onecyte Biotechnologies Inc

99 North Street
Somerville, MA 02144
   (617) 910-7825
   N/A
   www.onecyte.com
Location: Single
Congr. District: 07
County: Middlesex

Phase I

Contract Number: 1819932
Start Date: 7/1/2018    Completed: 3/31/2019
Phase I year
2018
Phase I Amount
$225,000
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) project is to develop single cell analysis technology to provide insight into cellular mechanisms, which has the potential to transform drug development and manufacturing. Single-cell analysis, or the ability to decipher cell-to-cell heterogeneity, is a limiting factor in biotechnology and clinical applications. This project aims to further develop a transformative platform technology for integrated single-cell analysis capable of addressing existing challenges with the current state-of-the-art. The platform will potentially shift the paradigm of drug development and manufacturing, enabling quick iteration and evaluation of new therapeutic compounds. This approach could significantly reduce the time and cost to bring new drugs to market and reduce the overall cost of treating patients, which is a substantial benefit to society. Beyond this initial application, this single-cell analysis platform could become a readily implemented research tool, enhancing our basic understanding of biology, facilitate engineering of cell function, as well as evaluating safety and efficacy of new drugs and treatments.This SBIR Phase I project proposes to develop a robust and cost effective commercial prototype technology platform for integrated single-cell analysis. A key feature of the platform technology is the unprecedented sensitivity in measuring quantitatively secreted molecules from single cells. This is achieved by incubating single cells in extremely small volumes, and enabling analytics on an unprecedented scale in these microscopic bioreactors. The proposed work will lead to the development of a consumable prototype microfluidic chip, enabling quick and resource efficient adaptation of the platform to the marketplace. The proposed prototype will be validated through relevant studies, addressing a confirmed market need in cell line development. Commercial adaptation of this prototype will potentially provide deep insight into biological and physiological processes on a single-cell level, and transform drug development and manufacturing, therapeutic treatment, as well as clinical diagnostics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Phase II

Contract Number: 2309447
Start Date: 9/15/2023    Completed: 8/31/2025
Phase II year
2023
Phase II Amount
$988,939
The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase II project is accelerating the manufacturing of and access to newly developed therapeutics and vaccines. To address global health problems, effective and safe new biologics such as therapeutics and vaccines will need to be manufactured at unprecedented large scales and short times. Accelerating access to new biologics for potentially billions of individuals will be critical for healthcare and the global economy. The solutions will be manifold, and realizing productive and robust manufacturing for these candidate preventative and therapeutic medicines in a short period of time remains a key challenge to transition discoveries from the lab to the clinic. The innovations proposed in this project could significantly accelerate drug development and biologics manufacturing by shortening the biologics development times up to six months. Vaccine and drug developers would succeed faster and fail faster, enabling accelerated transitions of discoveries for new therapeutics to the clinic and beyond by addressing critical steps in manufacturing. Improving transitions should also let developers test a higher number of compounds, thereby increasing the performance and potentially reducing the side effects of these drugs.This project aids in the manufacturing of novel therapeutics and vaccines. Manufacturing of biologics starts with a high-performing clonal cell-line, derived (by definition) from a single cell. Developing such a cell line today takes up to six months due to the iterative screening and testing needed to assure quality and performance. This essential step in any biologic manufacturing transition is critical time lost in the fight against disease. This project enables drug developers to select a high-performing cell clone in one day, compared to many months by using a proprietary, single-cell, proteomics platform at an unprecedented throughput rather than having to go through lengthy, iterative selection, clonal expansion and analytics. The scope of the research is focused on addressing the remaining critical technical hurdles before deploying the technology for commercial use. Specifically, a systematic and statistical approach will be used to implement necessary alternative materials and processes. The goal of the project will be implementing the developed processes with biotechnology industry partners to accelerate vaccine and therapeutic development and manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.