Phase II year
2017
(last award dollars: 2021)
Phase II Amount
$1,409,979
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project is the development of a drug screening system that will accelerate drug discovery for several eye diseases, including glaucoma, diabetic retinopathy, and macular edema. This technology will fulfill unmet needs of small and large biopharmaceutical companies engaged in drug discovery for various eye diseases by reducing development cost, expediting preclinical research, and increasing the chances of clinical success. From the socio-economic standpoint, this technology will result in the development of more effective ocular drugs that will decrease eye disease treatment cost. Furthermore, this model will facilitate more rapid development of technologies for the diagnosis of glaucoma and new surgical techniques in the management of this disease. Overall, this screening system will accelerate the development of medications for eye diseases, enhancing the quality of life for millions of people.This SBIR Phase II project will address the lack of effective models for testing targeted glaucoma therapeutics and additional ocular diseases. Currently, none of the available glaucoma medications target the eye tissue responsible for this disease due to absence of clinically relevant testing platform that incorporates this particular eye tissue. Presently, animal or human cadaver eyes are used to study and test the effects of medications on such tissue, however, these preparations are cumbersome and expensive. The proposed work will be the first-of-its-kind to engineer physiologically-relevant 3D human eye tissues utilizing novel cell culture methods along with microfabrication techniques and a microfluidic system. These 3D tissues will facilitate the development of disease-relevant in vitro model systems for understanding not only glaucoma but also diabetic retinopathy and macular edema pathology. This tool will help increase the success rate of glaucoma and ocular vasculature-related medications at later stages of drug development pipeline.