SBIR-STTR Award

Single Molecule NanoTweezers
Award last edited on: 12/28/2023

Sponsored Program
SBIR
Awarding Agency
NSF
Total Award Amount
$1,450,614
Award Phase
2
Solicitation Topic Code
NM
Principal Investigator
Bernardo Cordovez

Company Information

Halo Labs (AKA: Optofluidics Inc)

3711 Market Street Suite 970
Philadelphia, PA 19104
   (215) 253-5777
   info@opfluid.com
   www.opfluid.com
Location: Single
Congr. District: 03
County: Philadelphia

Phase I

Contract Number: 1046707
Start Date: 1/1/2011    Completed: 12/31/2011
Phase I year
2010
Phase I Amount
$174,365
This Small Business Innovation Research Phase I project aims to develop a commercial optically resonant nanotweezer chip. The nanotweezer technology, originally developed at Cornell University, uses photonic resonance to localize optical forces so they can be used to directly manipulate biological (nucleic acids & proteins) and non-biological (nanoparticles) materials as small as a few nanometers in size. It has recently been used to demonstrate the manipulation of the smallest dielectric matter ever, as well as individual strands of DNA. We will focus our efforts on developing a commercial system which facilitates the study of the single molecule interactions, as this has the most immediate market appeal. At present, research into the understanding of how single molecules interact is greatly impeded by the lack of a simple technique which can: (1) capture and suspend small molecules in free solution for an indefinite period of time (2) effectively "concentrate" the set of molecules of interest to a point where protein-protein or other multi-molecule interactions can be studied and (3) allow rapid modulation of the external environmental conditions. The nanotweezer system to be developed here has the potential to solve all three of these problems simultaneously. The broader impact/commercial potential of this project is that it will result in a commercially available product that can directly manipulate extremely small particles and molecules, and could be transformative to scientific and industrial advancement in a number of areas including: (1) the analysis of individual nucleic acids for rapid sequencing and direct haplotyping, (2) the directed assembly of new forms of nanomaterials for energy production, and (3) the understanding of faulty protein-protein events and other single molecule interactions. The importance of the latter of these (which is the target application for the initial version of this chip) is highlighted by the large number of diseases that have been linked to such events, in particular neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's. The development of tools that can facilitate experimental studies of how single biomolecules and small aggregates interact can reveal information about the fundamental molecular processes that lead to these deficiencies. The nanotweezer technology has a series of key advantages over existing commercial technologies that can enable researchers to better understand these phenomena in environments closer to the physiological state. We believe that these advantages will give us a significant commercial advantage over competing products

Phase II

Contract Number: 1151966
Start Date: 3/15/2012    Completed: 12/31/2016
Phase II year
2012
(last award dollars: 2017)
Phase II Amount
$1,276,249

This Small Business Innovation Research Phase II project aims to develop a commercial optically-resonant nanotweezer chip and corresponding instrumentation. The nanotweezer technology, originally developed at Cornell University, uses localized optical forces to directly manipulate biological (nucleic acids & proteins) and non-biological (nanoparticles) materials as small as a few nanometers in size. Efforts will be focused on developing a commercial system which facilitates the study of single-molecule interactions, as this sector has immediate market appeal and is experiencing very high growth. At present, research into the understanding of how single molecules interact is greatly impeded by the lack of a fast and simple technique which can: (1) capture and suspend small molecules in free solution for an indefinite period of time, (2) effectively "concentrate" the set of molecules of interest to a point where protein-protein or other multi-molecule interactions can be studied, and (3) allow rapid modulation of the external environmental conditions. The nanotweezer product line to be developed here, consisting of optical chips which carry the core technology, as well as a driving instrument, represents a quick and cost-effective system that allows researchers to solve all three of these problems simultaneously. The broader impact/commercial potential of this project will be a commercially-available product that can directly manipulate extremely small biomolecules and particles, and could be transformative to scientific and industrial advancement in a number of areas including: (1) the understanding of faulty protein-protein events and other single-molecule interactions, (2) the analysis of individual nucleic acids for rapid sequencing, and (3) the directed assembly of new forms of nanomaterials for energy production. The importance of the first item (which is the target application for the initial version of this platform) is highlighted by the large number of sufferers of neurodegenerative disorders such as Alzheimer's and Parkinson's, which are diseases that have been linked by protein misfolding events. The development of tools that can facilitate experimental studies of how single biomolecules and small aggregates interact can reveal information about the fundamental molecular processes that lead to these deficiencies. The nanotweezer technology has a series of key advantages over existing commercial methods that can enable researchers to better understand these phenomena in environments closer to the physiological state. We believe that these advantages will create a significant commercial advantage over competing products