SBIR-STTR Award

Power Management for Energy Harvesting
Award last edited on: 6/7/2010

Sponsored Program
SBIR
Awarding Agency
NSF
Total Award Amount
$150,000
Award Phase
1
Solicitation Topic Code
-----

Principal Investigator
Wayne Chen

Company Information

Triune Systems LLC

681 North Plano Road Suite 121
Richardson, TX 75081
   (972) 231-1606
   sales@triunesystems.com
   www.triunesystems.com
Location: Single
Congr. District: 32
County: Dallas

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2010
Phase I Amount
$150,000
This Small Business Innovation Research (SBIR) Phase I project will research and develop state-of-the-art ultra-low power management integrated circuits (IC) for portable and energy harvesting solutions. The creation of floating gate technology for analog and power management applications will provide new methods and building blocks for solving ultra-low power consumption challenges needed for mobile and autonomous solutions. The novel modification of existing and newly developed analog processes and components will enable revolutionary high power, quality and reliable circuits, while maintaining an extremely low quiescent operating current. This is closely tied to energy harvesting solutions as the efficiency of transferring stored scavenged energy to electronic loads defines the size, cost, and adoption of autonomous systems. To make a harvesting system viable the modules will be highly efficient in their use of the available energy. An off-active switch module and an ultra-low quiescent current regulator will be developed utilizing floating gate techniques to obtain significant reductions in power consumption. The revolutionary off-active switch module, a function which does not exist in the market today, requires drawing near zero current from the battery when in the off-state. Low power regulators require ultra-low operating current levels needed to realize a harvesting system. The broader impact/commercial potential of this project is to provide circuit module building blocks for energy harvesting systems in market spaces such as wireless sensor networks. This will enable several of the harvesting and storage technologies currently under development in the US, gain greater market acceptance, reduce energy demand from non-renewable sources, and create technical leadership in the US for this market space. With the availability of these building blocks and making them readily available, system designers will have IC solutions in place to reduce their time in creating their systems to leverage energy harvesting. Up-integration of these modules can then be tailored for each application quickly, reducing the system cost and time to market

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
----
Phase II Amount
----