SBIR-STTR Award

Physical Layer Security for Wireless Communications
Award last edited on: 6/10/2010

Sponsored Program
SBIR
Awarding Agency
NSF
Total Award Amount
$150,000
Award Phase
1
Solicitation Topic Code
-----

Principal Investigator
Cenk Argon

Company Information

Whisper Communications LLC

75 Fifth Street NW Suite 202
Atlanta, GA 30308
   (678) 439-6499
   jeff@whispercomm.com
   www.whispercomm.com
Location: Single
Congr. District: 05
County: Fulton

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2010
Phase I Amount
$150,000
This Small Business Innovation Research (SBIR) Phase I project will add security of the strongest type to the physical layer of wireless communication systems, a layer in the protocol stack where currently little or no security is implemented. Despite existing security mechanisms that operate at higher layers of the protocol stack, the lack of any security measure at the wireless physical layer poses a significant threat. Hence, the goal of this project is to provide reliable and secure broadband wireless connectivity against passive eavesdroppers, where data privacy is tied to proximity to the data source. In this physical layer security approach, privacy will be provided by powerful error correcting codes and pre-processing techniques to deliver high reliability to the intended parties and high security against remote eavesdroppers. The intellectual merit of this proposal is in new approaches to physical layer communications, from both theoretical and practical perspectives. This project will focus on: (1) Development of secure codes for 60GHz wireless communications, (2) Implementation of an uncompressed video platform with secure codes to demonstrate secure wireless video transmission, and (3) Validation, specification, and testing of the "Virtual Faraday Cage" concept. The broader impact/commercial potential of this project has two dimensions: First, it will demonstrate a new security concept in high performance physical layer communication systems and as such is expected to change the design, perception, and usage of classical wireless communication systems. The notion of a highly secure and reliable physical layer has the potential to significantly change how communication system designers and users think of the physical layer since the error control codes developed in this work will have the dual roles of both reliability and security. Second, the commercial potential foreseen for this project is large since manufacturers active in the broadband wireless systems arena do not have any physical layer security implementation in their current product offerings. Hence, these manufacturers will be highly interested to invest in and implement this novel technology in their products. This project's focus is centered on high-level security with implementable complexity and if successfully incorporated into a standards-dominated industry, a significant commercial impact is expected

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
----
Phase II Amount
----