Phase II year
2011
(last award dollars: 2014)
This Small Business Innovation Research (SBIR) Phase II project aims to develop a novel, commercially-viable, hybrid system that improves the adhesion of nanocrsytalline diamond (NCD) coatings to tungsten carbide (WC) cutting tools. A new hybrid system will be assembled, tested, and optimized. Research will be conducted to scale up the process to reach the capability of coating more than 3,000 cutting tools at one time. Further research will be conducted through laboratory and industrial machinability testing on these diamond-coated micro end mills. Testing variables include tool size, tool geometry, machining parameters (cutting speed, axial depth of cut, feedrate), workpiece material and environmental conditions. Industrial feedback will be used to ensure coating optimization to meet the needs of real users. The broader/commercial impacts of this project will be the potential to significantly improve the performance of micro tools. An important area of this industry is currently limited by poor micro end mill performance. Improved tooling performance will not only reduce the capital machine cost in this field, but also help realize the miniaturization of existing cutting-edge technology limited by current manufacturing capabilities. The most promising societal benefits of NCD tool coating will be realized in healthcare industry as diamond coatings are essential for the development of next generation biosensors and biomedical devices. This will significantly improve the quality and substantially reduce costs associated with biological sample testing, reducing the financial burden of healthcare expenses on individuals and the country