SBIR-STTR Award

Metal-based microchannel heat exchange systems for electronic devices
Award last edited on: 1/18/2013

Sponsored Program
SBIR
Awarding Agency
NSF
Total Award Amount
$764,880
Award Phase
2
Solicitation Topic Code
-----

Principal Investigator
Fanghua Mei

Company Information

Enervana Technologies LLC

8000 GSRI Avenue Buiding 3000
Baton Rouge, LA 70820
   (225) 573-9349
   info@enervanatech.com
   www.enervanatech.com
Location: Single
Congr. District: 06
County: East Baton Rouge Parish

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2009
Phase I Amount
$100,000
This Small Business Innovation Research (SBIR) Phase I project aims to develop a compact, metalbased, sealed, recirculating, fluid cooling system for electronic devices. Metal-based microchannel heat exchangers (MHEs) have potential advantages over Si-based devices in terms of thermal performance and mechanical robustness. The proposed fabrication technology is unique and provides a means to low-cost, high-throughput, mass production of high efficiency, microchannel cooling systems for micro-electronic and power-electronic devices. Efficient fabrication of metal-based MHEs and quantitative flow and heat transfer measurements on them are critical for establishing the economic and technical feasibility of such devices. The proposing team has spearheaded the development of metallic high-aspect-ratio microscale structures (HARMSs) fabrication by molding replication, a potentially low-cost, high-throughput, mass production technique. This proposal will focus on the fabrication, assembly, and testing of metallic MHE based heat absorption modules and metallic MHE assembly based heat rejection modules. The team will 1) build all-metal, compact, high-efficiency, heat absorption/rejection module prototypes, 2) test these prototypes and quantify their heat transfer performance, 3) establish the engineering protocol for optimizing MHE geometries. The testing results on MHE-assembly based heat rejection modules will be benchmarked against competing devices. Traditional air cooling technology has become a limiting factor for current generation high performance electronic devices and will be insufficient for removing heat generated from new generation micro-electronic and power-electronic devices. Successful execution of this proposal will provide a novel, high-efficiency, microchannel fluid cooling technique for these new generation devices. The target product of this proposal will be marketed to computer original equipment manufacturers (OEMs), such as Intel, IBM, Apple, Dell, Lenovo, etc., and is believed to enjoy performance and cost advantages over competing devices currently being contemplated. The study on the fabrication and heat transfer testing of metal-based MHEs with complicated designs will enhance scientific and technological understanding related to both science of manufacturing and fluid flow and heat transfer. This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
2010
Phase II Amount
$664,880
This Small Business Innovation Research (SBIR) Phase II project aims to develop a compact, metal-based, recirculating liquid cooling system for next-generation electronic devices. The dramatic increase in computing power over several decades has been accompanied by an equally dramatic increase in the heat generated at the electronic module level. It is generally accepted that forced air cooling, the dominant cooling technology of today, will not be sufficient for high performance devices of tomorrow. Alternative cooling technologies with higher performance and lower area/volume footprint have become critical for better-performing computing devices. A significant market is expected for such advanced chip cooling technologies. Metal-based microchannel heat exchangers (MHEs) combine high heat flux removal capacity, low area/volume footprint, as well as high mechanical integrity, and constitute a leading technological contender for replacing forced air cooling. This project will focus on design and fabrication of metal-based MHEs and MHE assemblies as heat absorption and rejection modules with improved heat transfer performance, assembly of recirculating-liquid MHE systems, and benchmarking against competing technologies. The study on the design, fabrication, and heat transfer testing of metal-based MHEs will enhance scientific and technological understanding related to micromanufacturing, as well as microchannel liquid flow and heat transfer. The broader impact/commercial potential of this project is tied into the ultimate project goal of incorporating liquid-based chip cooling technology with the best performance into next-generation desktop personal computers and other microelectronic and powerelectronic devices. The planned recirculating-liquid MHE chip cooling system is envisioned to become a critical enabler of higher performance and higher power electronic devices. A quick review of the progress in computing devices over the last few decades and the associated societal changes serves to convince that increased computing power in the hands of imaginative people can unleash unforeseen innovations. Successful execution of this project will push to the market place a product that can serve a catalytic role in such an innovation unleashing process. The target product will be marketed to computer original equipment manufacturers and is shown to enjoy performance and cost advantages over competing devices currently being contemplated. The project goal is to develop cost-effective manufacturing technologies to the point of production readiness. Successful execution of this project will help to establish the commercial viability of a technology-based manufacturing company with potential for positive economic impact and job creation