SBIR-STTR Award

Tip Biosensor Array for MRSA Surveillance Testing
Award last edited on: 9/10/2018

Sponsored Program
STTR
Awarding Agency
NSF
Total Award Amount
$665,996
Award Phase
2
Solicitation Topic Code
-----

Principal Investigator
Kyonghoon Lee

Company Information

NanoFacture Inc

16301 NE 8th Street # 110
Bellevue, WA 98008
   (425) 269-6051
   N/A
   www.nano-facture.com

Research Institution

----------

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2007
Phase I Amount
$149,996
This STTR Phase I research proposal will demonstrate the feasibility of a nanoscale needle (nano-needle) probe biosensor assaying low-abundance nucleic acids without target-/signal amplification. The unique point in the proposed work lies in the combined use of dielectrophoresis and capillary action to fabricate a high-aspect ratio nano-needle made of a hybrid nanomaterial and to operate the nano-needle as a biosensor, achieving high sensitivity through size-exclusive sample concentration. The company has already succeeded in nonspecifically sampling/assaying intercalator-treated lambda-DNA spiked into a buffer or cell solution in a quantitative manner. The sensitivity of this achievement was around 10pg/mL (0.3fM) which is comparable to the concentration of naturally occurring DNA species and sufficient for screening/detection of circulating DNA in blood (sub-50ng/mL). The method will pave the way to high throughput fabrication of high aspect ratio nano-needle structures and the application to the biosensing platform. The proposed nano-needle biosensor device will enable simple, rapid, yet sensitive detection without target-/signal amplification and minimize the operation in terms of the physical size, corresponding energy consumption, sample size, and sample preparation time as a field-deployable device. The biosensor is aimed for point-of-care-testing using minimally treated or raw samples. Eventually, the device will be applicable to nucleic acid testing (NAT) for rapid screening of diseases (e.g. cancer), which is enabled through minimally treated samples.

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
2010
Phase II Amount
$516,000
This Small Business Technology Transfer Research (STTR) Phase II project is to develop a prototype biosensor array system for rapid surveillance of Methicillin-Resistant Staphylococcus aureus (MRSA) operated by minimally-trained personnel. MRSA, one of the major bacterial pathogens for healthcare acquired infections (HAI), afflicts overcrowded and understaffed US hospitals. Thus, an urgent need exists for a more rapid, reliable yet affordable testing method for HAI screening. The proposed tip sensor?s novel sample concentration mechanism enables rapid screening of whole cells followed by confirmation of genetic signatures. The project implements a proprietary sample concentration mechanism for highly efficient capture and detection of bacterial pathogens in a size-exclusive manner. The novelty of the proposed work involves studying DNA reaction kinetics enhanced by a high-frequency electric field on a high aspect ratio tip. The transformative nature of the proposed biosensing technology enables screening for pathogens and nanoparticles without culture and amplification.The broader impact/commercial potential of this project is to establish a solid fabrication and detection method for a high-throughput biosensor. The tip sensors offer a specific concentration of whole bacterial cells (screening) and an accelerated DNA detection (confirmation). The proposed method will pave the way to high-throughput screening of pathogens through the specific detection in terms of target-geometry, electric properties, and affinity chemistry. The operation cost and time can be minimized through superior concentration performance. Considering the concentration and detection mechanisms, the tip sensor works as a universal platform for low cost detection of various pathogenic analytes including bacteria and viruses, proteins and nucleic acids in clinical samples. The societal impact of this biosensor platform will fulfill an unmet need to save healthcare costs associated with specific pathogens. The technology would eventually be deployed in resource-limited settings including individual uses, for the detection of various pathogens. Thus, this technology will directly impact the fields of micro/nanochip fabrication, biomedical sensors, and low-cost diagnostics.