This Small BusinessTechnology Transfer Research (STTR) Phase I project seeks to advance the fundamental knowledge base and performance of lead-free electronic solders. Current lead-free electronic solders are performance limited by their thermomechanical fatigue and electrical characteristics due to microstructural instabilities, such as coarsening, grain boundary sliding, and ion migration along grain boundaries in these alloys. While nanoscale building blocks have been shown to alloy and provide enhanced properties in polymers, these tools have not been applied to control the dynamics of analogous structures in metals. An opportunity exists to utilize nanoscopic chemical reinforcement to control both microstructural stability and damage accumulation during service for lead-free electronic solder alloys. It is the objective of this project to utilize polyhedral oligomeric silsesquioxanes (POSS) to impart structural control at the 1-10 nm level in solders. Such control will afford solders with higher strength, durability, and dimensional stability for use as interconnects in aerospace, automotive, consumer and micro-electromechanical systems.The commercial application of this project is in improved, lead-free electronic solders. The identification of the mechanistic and process limitations for such control in alloys will afford insights into the development of solutions for metal fatigue, creep, and service life issues which plague commercial and military aircraft, automobiles, restorative dental amalgams and related prosthetics.