Ks-Detect: a Solar-Powered and Smartphone Integrated Instrument for Point-Of-Care Diagnosis of Kaposi's Sarcoma
Award last edited on: 8/11/15

Sponsored Program
Awarding Agency
Total Award Amount
Award Phase
Solicitation Topic Code

Principal Investigator
Li Jiang

Company Information


Norristown, PA 19403
   (202) 697-9755â€
Location: Single
Congr. District: 04
County: Montgomery

Phase I

Contract Number: 1R43CA193096-01
Start Date: 1/20/15    Completed: 6/30/15
Phase I year
Phase I Amount
A'as [pronounced Ah z], in collaboration with Cornell University and Weill Cornell Medical College, aims to commercialize a solar-powered and smartphone-integrated system for performing nucleic acid- based analysis of Kaposi's sarcoma herpesvirus in limited resource settings. Our "KS-Detect" system comprises of (1) an instrument that performs PCR through solar heating of a microfluidic chip, (2) a small traveling case that contains the instrument and can be carried by a clinician to the patient, and (3) a smartphone "app" that reads the on-chip temperatures, operates sample flow inside the chip, and interprets the fluorescence signal of the sample to provide the user with the test results. KS is one of the most prevalent cancers in sub-Saharan Africa and is associated with high mortality rates. Often, patients are not diagnosed until they develop later stages of the disease, when available therapeutics lose much of their potency. In the absence of immunohistochemistry, polymerase chain reaction (PCR) identification of Kaposi's sarcoma-associated herpesvirus (KSHV) in skin biopsies represents the most reliable method of diagnosing a patient. Unfortunately, existing technologies cannot address the needs associated with biopsy based nucleic acid screening in limited resource settings. As part of the $1.3B nucleic acid test market, new instruments must be cost effective and portable in order to provide early on-site diagnosis for those who cannot access care at centralized facilities. The technologies behind KS-Detect, which were developed at Cornell University, allow PCR-based diagnostics to be performed on tissue samples in the field without the need for expensive equipment or reliable electrical power. This is achieved through the incorporation of "lab-on-a-syringe" tissue processing, solar thermal PCR, and smartphone-based operation and diagnostics. A prototype was built and tested in Kenya and Uganda in early 2014. In Phase I we will ruggedize the current system and perform validation tests using pseudo- biopsies. With NIH support we will focus on a four-stage path to market plan that involves: (1) Technology development building off preliminary results, (2) Human trials in collaboration with Weill Cornell, AMPATH and the Infectious Diseases Institute, (3) System deployment in large-scale human studies, and (4) Product release to healthcare providers and other foundations.

Public Health Relevance Statement:

Public Health Relevance:
Kaposi's sarcoma is one of the most prevalent cancers in sub-Saharan Africa and is associated with high mortality rates due to extremely limited access to nucleic acid based tests in the developing world. In this proposal, A'as seeks to develop a solar-powered and smartphone-integrated instrument for performing polymerase chain reaction in limited resource settings. This low-cost and power-efficient system can be used by traveling clinicians as well as central labs.

Project Terms:
Address; Africa; Africa South of the Sahara; Archives; base; Biological Assay; Biopsy; blind; Businesses; Clinic; clinical Diagnosis; clinical efficacy; Collaborations; Communicable Diseases; cost; cost effective; Detection; Development; Devices; Diagnosis; Diagnostic; Disease; DNA; DNA amplification; Elements; Engineering; Equipment; experience; Feedback; fight against; Fluorescence; Foundations; Goals; Health Personnel; Health Services Accessibility; Heating; Herpesviridae; Human; human herpesvirus 8; Human Resources; Immunohistochemistry; Industry; innovation; Institutes; instrument; Kaposi Sarcoma; Kenya; Letters; Malignant Neoplasms; Marketing; Measures; Medical; medical schools; member; Methods; Microfluidics; Mortality Vital Statistics; Nature; Nucleic Acid Amplification Tests; Nucleic Acids; operation; Patients; Performance; Phase; point of care; Polymerase Chain Reaction; Population; Procedures; Process; professor; prototype; public health relevance; Reading; Resources; Sampling; screening; Sensitivity and Specificity; Signal Transduction; Site; Skin; Small Business Innovation Research Grant; Staging; stem; Syringes; System; Techniques; Technology; technology development; Technology Transfer; Temperature; Test Result; Testing; Therapeutic; Time; tissue processing; Tissue Sample; Training; Travel; Uganda; United States National Institutes of Health; Universities; user-friendly; Validation

Phase II

Contract Number: ----------
Start Date: 00/00/00    Completed: 00/00/00
Phase II year
Phase II Amount