Recent advances in countercurrent chromatography (CCC) have created novel spiral-design separation columns that hold a very high stationary phase of all the solvent systems, such that now all molecules of any size and water solubility can be successfully separated in high-speed countercurrent chromatography. With spiral CCC there is inherent versatility, more than any type of chromatography. Preliminary studies with the new spiral tubing support rotor succeeded in purifying Sutherlandioside B, a major water soluble cycloartane glycoside from Lessertia frutescent (Sutherlandia) is using an n- butanol solvent system. With the small volume of the coil (~100 ml) and a stationary phase at 50% (~50 ml), it is impressive that a mass of 1.2 g of crude plant extract could be efficiently fractionated in one runwith high recovery of the target compound. In addition, the active iridoid glycoside, harpagoside was isolated from an extract of Harpagophytum procumbens (Devil's Claw) in one step using a similar method. The first specific aim for Phase I am the design and manufacture of a preparative-scale spiral CCC instrument that will serve to rapidly separate complex water-soluble natural products with high- throughput capability. The studies will involve testing of a higher volume separation rotor and then its incorporation into a scaled-up planetary centrifuge. The pre-commercial prototype testing will be performed in conjunction with Dr. William Folk, the consultant from the University of Missouri. The second specific aim is the preliminary process development of purifying significant amounts of water-soluble extracts to obtain each of the sutherlandiosides and harpagoside metabolites from the medicinal African plants, L. frutescens and H. procumbens, respectively. A strategy of modifying a suitable solvent system to recover a target compound will be identified. With the compounds successfully purified, the studies will be continued in phase II to characterize their properties in cell culture and animal models, in collaboration with Dr. Folk and the University of Missouri. The successful outcome of this research will be a commercial instrument, the preparative spiral high-speed countercurrent chromatograph, an important technology for natural products chemistry that meets a demand in the global research market. The result will be increased productivity in drug discovery, enabling alternative medicines to be characterized and new therapies for many diseases and disorders. Finally, the application of butanol solvents so readily in spiral high-speed countercurrent chromatography is a promising example of green chemistry as these solvents are derived from biofuels.
Thesaurus Terms: 1-Butanol;Adopted;African;Alternative Medicine;Animal Model;Aqueous;Biological Factors;Businesses;Butanols;Cell Culture Techniques;Chemistry;Chromatography;Claw;Collaborations;Collection;Complex;Countercurrent Chromatography;Crude Extracts;Data Analyses;Design;Detection;Development;Disease;Drug Discovery;Excision;Fractionation;Glycosides;Harpagoside;Improved;Innovation;Instrument;Laboratory Research;Market Research;Mass Spectrum Analysis;Meetings;Method Development;Methods;Missouri;Natural Products Chemistry;Novel;One-Step Dentin Bonding System;Outcomes Research;Performance;Phase;Plant Extracts;Plants;Process;Productivity;Programs;Property;Prototype;Public Health Relevance;Pump;Recovery;Research;Response;Running;Scale Up;Small Business Innovation Research Grant;Small Molecule;Solid;Solvents;Speed (Motion);System;Technology;Testing;Tool;Uncaria Procumbens;Universities;Water;Water Solubility;