SBIR-STTR Award

Neural Probe for High Spatial and Temporal Resolution Detection of Cocaine and Su
Award last edited on: 12/24/14

Sponsored Program
SBIR
Awarding Agency
NIH : NIDA
Total Award Amount
$636,503
Award Phase
2
Solicitation Topic Code
-----

Principal Investigator
Brian Glenn Jamieson

Company Information

Diagnostic Biochips Inc

802 Cromwell Park Drive Suite N
Glen Burnie, MD 21061
   (410) 205-2443
   info@diagnosticbiochips.com
   www.diagnosticbiochips.com
Location: Single
Congr. District: 03
County: Howard

Phase I

Contract Number: 1R43DA036264-01
Start Date: 8/1/13    Completed: 7/31/15
Phase I year
2013
Phase I Amount
$255,419
The specific aim of this proposal is to test the feasibility of developing a long-lasting, implantable probe for rapid measurement of multiple neurochemicals in the brain. Currently, neuroscience research is limited to three techniques for measuring the concentrations of neurochemicals in vivo; microdialysis to obtain average concentrations over a relatively long time period (5-20 minutes), enzyme-based biosensors to detect a single neurochemical every second over a relatively large spatial area (500 ¿m length electrode), and carbon-fiber microelectrodes to detect dopamine with fast scan cyclic voltammetry (FSCV). A new tool is required for rapid detection of concentrations of multiple neurochemicals with spatial resolution on the cellular level. Such a tool would allow neuroscience researchers to ask new questions about the mechanisms behind disease states and behaviors, such as drug consumption. The proposed neural probe fulfills this need by detecting two neurochemicals every 4 seconds with 50 ¿m spatial resolution. The proposed probe will detect cocaine and substance P, a neuropeptide implied in cocaine addiction (Kampman, 2010). In 2008, reports stated that 1.4 million Americans meet the criteria for abuse or dependence on cocaine, which is associated with violence and incarceration (NIDA 2010; Nyamathi et al., 2012). SB Microsystems has already developed a proprietary MEMS process for fabricating implantable, multi-site neural probes for studying the rat brain. Our existing probes have the feature size necessary for a 10-fold spatial resolution improvement over the available enzyme-based electrodes. The proposed probe will build on our existing platform by functionalizing the probe site surfaces with molecules for the detection of specific neurochemicals. Detection of multiple neurochemicals will be achieved by patterning different neurochemical- specific detection molecules onto adjacent probe sites. Our Phase I proposal will determine feasibility for commercialization of these probes by; 1) improving functionalized probe fabrication by adjusting aptamer molecule modifications, immobilization technique, and electrical signal detection to achieve the best possible sensitivity and time response and 2) developing a Potentiostat circuit based for detection. Next, we will 3) functionalize the probe to detect multiple analytes with the cocaine and substance P aptamers and 4) implant probes into rats for in vivo data collection. Success in this Phase I feasibility study will be determined by te accurate detection of physiologically relevant concentrations of cocaine and substance P by probes that are stable in vivo for 2 days. In Phase II, we plan to develop more aptamers that can be applied to our probes for the detection of more than 2 neurotransmitters. We will use principles of robust design to turn our prototype into a commercial product. The attached letters of support indicate that we may be able to sell a successful prototype from Phase I to neuroscience researchers.

Public Health Relevance Statement:


Public Health Relevance:
The proposed work will result in a tool that can be used to study the brain mechanisms behind disease states such as Parkinson's disease, and behaviors such as drug consumption and dependence. Through the rapid detection of multiple neurochemicals, this product can provide more detailed information than currently available neuroscience tools. SB Microsystems is an engineering services firm with experience in the field of neuroscience tools and has the expertise required to produce robust, commercially viable implantable biosensors for neuroscience and clinical applications.

Project Terms:
Accounting; Achievement; Acute; Adenosine; American; Animals; aptamer; Area; ascorbate; base; Behavior; Behavioral; Biomedical Research; Biosensor; Brain; carbon fiber; Cell Separation; Chemicals; clinical application; Cocaine; Cocaine Dependences; Collection; commercialization; Consumption; cost; Custom; Data; Data Collection; Decision Making; Dependence; design; Detection; Disease; Dopamine; Electrodes; Engineering; Enzymes; Ethanol; Event; experience; Feasibility Studies; Glutamates; Hour; Immobilization; Implant; Imprisonment; improved; in vivo; Lead; Legal patent; Length; Letters; Life; Longevity; Measurement; Measures; meetings; Methods; Microdialysis; Microelectrodes; microsystems; Modification; National Institute of Drug Abuse; neurochemistry; Neurons; Neuropeptides; Neurosciences; Neurosciences Research; Neurotransmitters; optogenetics; Parkinson Disease; Pattern; Pharmaceutical Preparations; Pharmacodynamics; Phase; Process; prototype; public health relevance; rapid detection; Rattus; Reaction Time; Recovery; relating to nervous system; Reporting; Research Personnel; research study; Resolution; response; Role; Scanning; Seizures; sensor; Services; Signal Transduction; Site; Stimulus; Substance P; success; Surface; System; Techniques; Technology; technology development; Telemetry; Testing; Therapeutic; Time; Tissues; tool; Transplantation; Violence; Wor

Phase II

Contract Number: 5R43DA036264-02
Start Date: 00/00/00    Completed: 00/00/00
Phase II year
2014
Phase II Amount
$381,084
The specific aim of this proposal is to test the feasibility of developing a long-lasting, implantable probe for rapid measurement of multiple neurochemicals in the brain. Currently, neuroscience research is limited to three techniques for measuring the concentrations of neurochemicals in vivo; microdialysis to obtain average concentrations over a relatively long time period (5-20 minutes), enzyme-based biosensors to detect a single neurochemical every second over a relatively large spatial area (500 ¿m length electrode), and carbon-fiber microelectrodes to detect dopamine with fast scan cyclic voltammetry (FSCV). A new tool is required for rapid detection of concentrations of multiple neurochemicals with spatial resolution on the cellular level. Such a tool would allow neuroscience researchers to ask new questions about the mechanisms behind disease states and behaviors, such as drug consumption. The proposed neural probe fulfills this need by detecting two neurochemicals every 4 seconds with 50 ¿m spatial resolution. The proposed probe will detect cocaine and substance P, a neuropeptide implied in cocaine addiction (Kampman, 2010). In 2008, reports stated that 1.4 million Americans meet the criteria for abuse or dependence on cocaine, which is associated with violence and incarceration (NIDA 2010; Nyamathi et al., 2012). SB Microsystems has already developed a proprietary MEMS process for fabricating implantable, multi-site neural probes for studying the rat brain. Our existing probes have the feature size necessary for a 10-fold spatial resolution improvement over the available enzyme-based electrodes. The proposed probe will build on our existing platform by functionalizing the probe site surfaces with molecules for the detection of specific neurochemicals. Detection of multiple neurochemicals will be achieved by patterning different neurochemical- specific detection molecules onto adjacent probe sites. Our Phase I proposal will determine feasibility for commercialization of these probes by; 1) improving functionalized probe fabrication by adjusting aptamer molecule modifications, immobilization technique, and electrical signal detection to achieve the best possible sensitivity and time response and 2) developing a Potentiostat circuit based for detection. Next, we will 3) functionalize the probe to detect multiple analytes with the cocaine and substance P aptamers and 4) implant probes into rats for in vivo data collection. Success in this Phase I feasibility study will be determined by te accurate detection of physiologically relevant concentrations of cocaine and substance P by probes that are stable in vivo for 2 days. In Phase II, we plan to develop more aptamers that can be applied to our probes for the detection of more than 2 neurotransmitters. We will use principles of robust design to turn our prototype into a commercial product. The attached letters of support indicate that we may be able to sell a successful prototype from Phase I to neuroscience researchers.

Thesaurus Terms:
Accounting;Achievement;Acute;Adenosine;American;Animals;Aptamer;Area;Ascorbate;Base;Behavior;Behavioral;Biomedical Research;Biosensor;Brain;Carbon Fiber;Cell Separation;Chemicals;Clinical Application;Cocaine;Cocaine Dependences;Collection;Commercialization;Consumption;Cost;Custom;Data;Data Collection;Decision Making;Dependence;Design;Detection;Disease;Dopamine;Electrodes;Engineering;Enzymes;Ethanol;Event;Experience;Feasibility Studies;Glutamates;Hour;Immobilization;Implant;Imprisonment;Improved;In Vivo;Lead;Legal Patent;Length;Letters;Life;Longevity;Measurement;Measures;Meetings;Methods;Microdialysis;Microelectrodes;Microsystems;Modification;National Institute Of Drug Abuse;Neurochemistry;Neurons;Neuropeptides;Neurosciences;Neurosciences Research;Neurotransmitters;Optogenetics;Parkinson Disease;Pattern;Pharmaceutical Preparations;Pharmacodynamics;Phase;Process;Prototype;Public Health Relevance;Rapid Detection;Rattus;Reaction Time;Recovery;Relating To Nervous System;Reporting;Research Personnel;Research Study;Resolution;Response;Role;Scanning;Seizures;Sensor;Services;Signal Transduction;Site;Stimulus;Substance P;Success;Surface;System;Techniques;Technology;Technology Development;Telemetry;Testing;Therapeutic;Time;Tissues;Tool;Transplantation;Violence;Work