Phase II year
2018
(last award dollars: 2019)
Phase II Amount
$1,299,998
The United States Environmental Protection Agency (EPA) is establishing new safeguards for hazardous secondary materials with objectives to promote the economic, environmental, and public health benefits of recycling wastes, with an emphasis on several industrial sectors, including the pharmaceutical industry. On average, pharmaceutical manufacturers use at least 100 kg of solvents to make 1 kg of active pharmaceutical ingredient. EPA has determined that the environmental impacts from solvents used as manufacturing and processing aids could be significantly reduced if the product life of solvents used for these purposes were extended to more than a single use. By encouraging the safe recycling of wastes EPA hopes to reduce the life cycle risk of these wastes. Many of the solvents of interest to the EPA form mixtures with water that are difficult and/or energy- intensive to separate with conventional separation technologies such as distillation. Energy-efficient, cost effective, and otherwise non-polluting alternative technologies would make solvent recycling more feasible. The net effect of the EPA proposed safeguards is that these will strongly incentify pharmaceutical manufacturers to recycle process solvents. There are numerous needs in the pharmaceutical industry to use and recover high purity solvents. Key uses include: high purity alcohol, the ability to develop low-cost dewatering of solvents and a relative gentle and simple process for dewatering solvent under mild conditions. Compact Membrane Systems (CMS) proposes a novel membrane process that can lead to extremely high dewatering rates with high separation capabilities based on a family of chemically inert amorphous perfluoro membranes operating under a wide range (almost universal) of operating conditions. CMSs dewatering process is compatible with existing pharmaceutical solvent (PS) processing. Therefore, from a chemical stability standpoint, it can be operated with alcohols, organic acids, ketones, amines and aprotic solvents, to name a few. Since CMS membranes high flux is based on its high free volume and perfluoro nature, there is little need for concern about chemical interaction with the species present, and the actual permeability does not change significantly with water activity. Therefore, we have a potentially universal and simple system that can work on a wide range of PS for a wide range of applications under varying water activity. To enhance the potential for universal PS dehydration, CMS will develop A) membranes with enhanced water/solvent separation and B) more resistant system which equates to more resistant porous supports. CMS has recruited a number of key companies for supplying key materials and subsequently marketing the final product. CMS has acquired the resources (people and facilities) to prepare perfluoro copolymers which are not available elsewhere and which possess a new range of properties. Although the familiar monomer tetrafluoroethylene (TFE) is too hazardous for handling by a small company, a variety of other fluorinated monomers are safe to handle. Many copolymers have now been prepared by CMS. By not using TFE in our synthesis, we eliminate potential explosions and contact with potential carcinogens. Also we do not use PFOA/C8 surfactants as an additional precaution. During Phase II CMS will build a dehydration system and demonstrate dehydration of a number of solvents including methanol. Given our innovative success in Phase I with porous supports and special perfluoropolymer membranes, these materials will be used whenever existing porous supports and membranes do not work well. While we have been very successful with special perfluoropolymer membranes for enhanced solvent dehydration, this work has been exclusively using small laboratory-scale membranes. Phase II will focus on scaling up the membrane size and demonstrating it on real systems (i.e., working with pharmaceutical companies and the EPA).
Public Health Relevance Statement: Project Narrative Enhanced Recovery of Pharmaceutical Solvent Driven by EPA Initiative CMS will develop custom membranes with enhanced separation and highly resistant porous supports to permit energy-efficient, cost effective, and otherwise non-polluting alternative technologies for pharmaceutical solvent conservation, recycling. On average, pharmaceutical manufacturers use at least 100 kilograms of solvents to make 1 kilogram of active pharmaceutical ingredient. While we have been very successful with special perfluoropolymer membranes for enhanced solvent dehydration, this work has been using small laboratory- scale membranes. The Phase II SBIR program will focus on scaling up the membrane size and demonstrating it on commercially-feasible systems, while working with pharmaceutical companies and the EPA.
Project Terms: Acetone; Alcohol consumption; Alcohols; Amines; base; Carcinogens; chemical stability; Chemicals; copolymer; cost; cost effective; Custom; Dehydration; Development; Drug Industry; Economics; Electron Transport; Environment; Environmental Health; Environmental Impact; Event; Explosion; Family; Fiber; Film; Health; Health Benefit; Human; Incentives; Industrialization; innovation; interest; Isopropanol; Ketones; Kilogram; Laboratories; Lead; Letters; Life; Life Cycle Stages; Manufacturer Name; Marketing; Membrane; membrane flux; Methanol; monomer; Names; Nature; novel; organic acid; Permeability; Pharmaceutical Technology; Pharmacologic Substance; Phase; polyetheretherketone; Polymers; polyvinylidene fluoride; Process; programs; Property; Public Health; Reaction; Reagent; Recovery; recruit; Recycling; Resistance; Resources; Risk; scale up; Small Business Innovation Research Grant; Solid; Solvents; success; surfactant; System; Technology; tetrafluoroethylene; Thinness; United States Environmental Protection Agency; wasting; Water; Work