SBIR-STTR Award

X Ray Refractive Index And Element Selective Imaging
Award last edited on: 3/2/07

Sponsored Program
SBIR
Awarding Agency
NIH : NCI
Total Award Amount
$849,439
Award Phase
2
Solicitation Topic Code
-----

Principal Investigator
John F Clauser

Company Information

J F Clauser And Associates

817 Hawthorne Drive
Walnut Creek, CA 94596
   (925) 443-6499
   N/A
   N/A
Location: Single
Congr. District: 11
County: Contra Costa

Phase I

Contract Number: 1R43CA076858-01
Start Date: 00/00/00    Completed: 00/00/00
Phase I year
1997
Phase I Amount
$99,565
The project demonstrates an ultra-high resolution x-ray imaging system. It provides high contrast images of the density structure of objects that are otherwise x-ray transparent, e.g. low-Z human soft-tissue, and obtains edge enhanced contrast from x-ray refractive-index gradients. In mammography the contrast of a microcalcification is increased typically by 4-fold, and cancerous masses by much more. The system can be tuned to obtain element selective contrast to image resonantly minute quantities of a tracer element with Z=35-56, and only that element. It virtually eliminates the blurring and contrast-reducing effects of x-ray scatter. It operates at 15-40keV average x-ray energy with 3-50- fold reduced patient dosage, and significantly reduces the scanning time for CT 3D-imaging. It uses physical optics principles to form a Talbot-Lau imaging x-ray interferometer. It uses a conventional x-ray tube and filter, two microfabricated x-ray diffraction gratings, a CCD detector (and/or film), and an in-situ laser interferometer for alignment. Phase-I demonstrates a scatter-free 3cmx3cm image at - 50micrometers resolution, with refractive-index and/or tracer imaging. Phase-II similarly obtains >10cmx10cm images with an engineering prototype for a marketable device.

Thesaurus Terms:
X ray crystallography, biomedical equipment development, charge coupled device camera, imaging /visualization, interferometry, phase contrast microscopy X ray, optics, video microscopy phantom modelNational Cancer Institute (NCI)

Phase II

Contract Number: 2R44CA076858-02A1
Start Date: 00/00/00    Completed: 00/00/00
Phase II year
2001
(last award dollars: 2003)
Phase II Amount
$749,874

___(NOTE: Note: no official Abstract exists of this Phase II projects. Abstract is modified by idi from relevant Phase I data. The specific Phase II work statement and objectives may differ)___ The project demonstrates an ultra-high resolution x-ray imaging system. It provides high contrast images of the density structure of objects that are otherwise x-ray transparent, e.g. low-Z human soft-tissue, and obtains edge enhanced contrast from x-ray refractive-index gradients. In mammography the contrast of a microcalcification is increased typically by 4-fold, and cancerous masses by much more. The system can be tuned to obtain element selective contrast to image resonantly minute quantities of a tracer element with Z=35-56, and only that element. It virtually eliminates the blurring and contrast-reducing effects of x-ray scatter. It operates at 15-40keV average x-ray energy with 3-50- fold reduced patient dosage, and significantly reduces the scanning time for CT 3D-imaging. It uses physical optics principles to form a Talbot-Lau imaging x-ray interferometer. It uses a conventional x-ray tube and filter, two microfabricated x-ray diffraction gratings, a CCD detector (and/or film), and an in-situ laser interferometer for alignment. Phase-I demonstrates a scatter-free 3cmx3cm image at - 50micrometers resolution, with refractive-index and/or tracer imaging. Phase-II similarly obtains >10cmx10cm images with an engineering prototype for a marketable device.

Thesaurus Terms:
X ray crystallography, biomedical equipment development, charge coupled device camera, imaging /visualization, interferometry, phase contrast microscopy X ray, optics, video microscopy phantom modelNational Cancer Institute (NCI)