SBIR-STTR Award

Adaptive Neuromorphic Processors for Cognitive Communications
Award last edited on: 1/14/2023

Sponsored Program
SBIR
Awarding Agency
NASA : GRC
Total Award Amount
$1,049,987
Award Phase
2
Solicitation Topic Code
H6.22
Principal Investigator
Tarek M Taha

Company Information

Brisk Computing LLC

1191 Red Ash Court
Centerville, OH 45458
   (412) 916-7825
   info@briskcomputing.com
   briskcomputing.com/
Location: Single
Congr. District: 10
County: Montgomery

Phase I

Contract Number: 80NSSC22PA971
Start Date: 7/21/2022    Completed: 1/25/2023
Phase I year
2022
Phase I Amount
$149,990
The objective of this work is to develop highly Size, Weight, and Power (SWaP) efficient neuromorphic processors that can train deep learning algorithms. The training phase for deep learning is very compute and data intensive. Being able to train a network on the satellite eliminates the need to send large volumes of data to earth for training a new network. However, this requires an extremely energy efficient deep learning training processor. We will develop resistive crossbar neuromorphic processors, with the primary target being to train deep learning algorithms. Although our system would work for any type of data, we plan to focus on networks for cognitive communication applications. We will also look at processing networks for other data sets. The key outcomes of the work will be the processor design, processor performance metrics on various applications, prototype system, and software for the processor. Anticipated

Benefits:
Potential NASA applications include various deep learning training and inference tasks on satellites. These include cognitive communications, processing sensor outputs, and scientific experiments. Additionally, the developed system could be used for UAVs. The non-NASA market would be primarily for edge processing, where power is highly limited. The market includes both the DoD and the commercial market. DoD applications include cognitive communications, sensor processing, cognitive decision making, and federated learning. Commercial applications include communications systems, automobiles, consumer electronics, and robots.

Phase II

Contract Number: 80NSSC23CA078
Start Date: 7/20/2023    Completed: 7/19/2025
Phase II year
2023
Phase II Amount
$899,997
The objective of this work is to develop highly Size, Weight, and Power (SWaP) efficient neuromorphic processors that can train deep learning algorithms. The training phase for deep learning is very compute and data intensive. Being able to train a network on the satellite eliminates the need to send large volumes of data to earth for training a new network. However, this requires an extremely energy efficient deep learning training processor. We will develop resistive crossbar neuromorphic processors, with the primary target being to train deep learning algorithms. We will look at multiple type of networks, including for cognitive communication applications, anomaly detection, and imaging. We will also look at processing networks for other data sets. The key outcomes of the work will be the processor design, processor performance metrics on various applications, prototype system, and software for the processor. Anticipated

Benefits:
Potential NASA applications include various deep learning training and inference tasks on satellites. These include cognitive communications, processing sensor outputs, and scientific experiments. Additionally, the developed system could be used for UAVs. The non-NASA market would be primarily for edge processing, where power is highly limited. The market includes both the DoD and the commercial market. DoD applications include cognitive communications, sensor processing, cognitive decision making, and federated learning. Commercial applications include communications systems, automobiles, consumer electronics, and robots.