This Phase II proposal for a Fission Stirling Convertor (FSC) that is ideally suited for use with fission-based Space Nuclear Power Systems (SNPS) and/or Nuclear Electric Propulsion (NEP) systems. All Phase I objectives were successfully achieved, laying the groundwork for a high-confidence and high-performance FSC prototype demonstration in Phase II. FSC is adapted from the prior ARPA-E GENSETS program development by AMSC of a 1-kW Free-Piston Stirling Engine (FPSE) (as used in this context engine and convertor are essentially equivalent) for terrestrial applications. Changes from the GENSETS design were primarily to meet specialized NASA needs for SNPS such as radiation tolerance, launch load robustness, higher ambient temperature environment, and interface with a condensing sodium heat source. This Phase II proposal is specifically addressed to SBIR Topic Z1.03 (Fission Surface Power Generation), and more specifically Technology Area TA3 (Space Power and Energy Storage) in the NASA SBIR/STTR 2018 Phase I Solicitation. The FSC Stirling convertor offers multifunctional versatility that can efficiently convert thermal energy from a wide variety of heat sources into useful distributed electric power. The focus here is on heat extraction from a fission power system using heat pipes, or potentially a pumped liquid metal loop. AMSC strategic partner Teledyne Energy Systems, Inc. (TESI) provided valuable future system integration perspective in Phase I and will specifically play a key role in the Phase II Technology Maturation task. Columbia Basin Consulting Group (CBCG) will provide support in Phase II for the Na pool boiler final design and will perform the Na vessel bake out and charging function. Potential NASA Applications (Limit 1500 characters, approximately 150 words) Fission Stirling Convertor (FSC) that is ideally suited for use with fission-based Space Nuclear Power Systems (SNPS) and/or Nuclear Electric Propulsion (NEP) systems Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words) Improvements made in the technology leveraged from the GENSETS program can be back fed into the GENSETS engine design and commercialized through that existing program. The GENSETS program targets combined heat and power generation units for natural gas fed residential applications.