SBIR-STTR Award

Discrete Time State-Space Aeroservoelastic Modeling using FUN3D
Award last edited on: 5/10/2021

Sponsored Program
SBIR
Awarding Agency
NASA : LaRC
Total Award Amount
$874,150
Award Phase
2
Solicitation Topic Code
A1.01
Principal Investigator
Ping-Chih Chen

Company Information

Zona Technology Inc (AKA: ZONA)

9489 East Ironwood Square Drive Suite 100
Scottsdale, AZ 85258
   (480) 945-9988
   info@zonatech.com
   www.zonatech.com
Location: Single
Congr. District: 06
County: Maricopa

Phase I

Contract Number: 80NSSC18P1878
Start Date: 7/27/2018    Completed: 2/15/2019
Phase I year
2018
Phase I Amount
$124,176
CFD-based reduced order modeling (ROM) has been an active research area, as they can be used directly with common linear flutter analysis tools. Among them, linearized reduced-order modeling approaches rely on linearization of the nonlinear unsteady aerodynamic flow equations, assuming that the amplitude of the unsteady motion is limited to small perturbations about the nonlinear steady-state flow condition. Various approaches of linearized ROMs, such as Auto-Regressive-Moving-Average (ARMA), first order Volterra Kernel, Impulse Response method, etc., can be broadly found in literature. However, few of them are geared towards the controller design oriented plant modeling, i.e., to obtain a plant model with control surface actuator modeling and gust excitations, and various types of sensor definitions including sectional/component load monitoring capability. In light of this, ZONA proposes to develop a discrete time state-space aeroservoelastic modeling technique with component load monitoring using NASA developed high fidelity Navier-Stokes flow solver, FUN3D. The subspace realization algorithm will be utilized to identify the individual aerodynamic systems, i.e., due to the structural deformations (modal coordinates), control surface deflections and discrete gust, respectively. The dataset needed for the aerodynamic system identifications are obtained by a wrapper program, called OVERFUN, driving the underlying FUN3D solver. OVERFUN’s trim or static aeroelastic analysis solution will provide an initial background solution accounting for static aeroelastic effects. This unique initial flow solution sets the proposed efforts apart from other research work where an initial flow around rigid configurations is normally assumed. Once all three sub aerodynamic system are identified, they are coupled with the structural equation of motion represented in modal space and actuator models to yield the conventional state-space forms of aeroelastic model and plant model. Potential NASA Applications The proposed effort is highly relevant to on-going and future NASA fixed wing projects, which involve innovative design concepts such as the Truss-Braced Wing, Blended Wing Body, and Supersonic Business Jet. The proposed work will offer a computational tool to the NASA designers for early exploration of design concepts that exploit the trade-off between the passive and active approaches for mitigating the potential aeroelastic problems associated with those configurations. Potential Non-NASA Applications The proposed discrete time state-space ASE plant model generation can be applied to many categories of flight vehicles including blended wing-bodies, joined wings, sub/supersonic transports, morphing aircraft, space planes, reusable launch vehicles, and similar revolutionary concepts pursued. Hence, the proposed research and its outcomes will be highly needed for designing the next generation of civil as well as military aircraft to meet the stringent future performance goals.

Phase II

Contract Number: 80NSSC19C0086
Start Date: 8/14/2019    Completed: 8/13/2021
Phase II year
2019
Phase II Amount
$749,974
The overall technical objective of the Phase II effort is to make OVERFUN as a fully multi-functional aeroelastic software system that can establish either the discrete time state-space plant model or the frequency-domain aeroelastic equation of motion with three embedded unsteady aerodynamic sub-systems; due to the structural deformation, the control surface deflection and the discrete gust excitation, respectively. All three unsteady aerodynamic sub-systems can be obtained by applying the extended complex variable differentiation (CVD) technique to the complex version of FUN3D, referred to as FUN3D-CVD, to generate the numerically exact linearized unsteady aerodynamic forces. As a wrapper around the steady Navier-Stokes (N-S) solver of FUN3D for trim analysis with static aeroelastic effects as well as a wrapper around the complex unsteady N-S solver of FUN3D-CVD for generating the three unsteady aerodynamic sub-systems, OVERFUN can establish a very accurate time-domain plant model or frequency-domain aeroelastic equation of motion that can capture all essential flow physics on a statically deformed aeroelastic model. To showcase that the OVERFUN generated plant model can be directly adopted by the modern control law design schemes for control system design, a classical and a robust flutter suppression and gust load alleviation control systems will be generated for the Benchmark Active Controls Technology wing with trailing edge flap as input as well as with the upper spoiler as input. A twin-engine transport flutter model (TETFM) that was tested by the Boeing engineers in the Transonic Dynamics Tunnel (TDT) will be selected as the test case to demonstrate the accuracy of the OVERFUN predicted aeroelastic solution for complex configuration by the validation with the TDT measured flutter boundary of the TETFM. The outcome of the Phase II effort will be a production-ready OVERFUN software system for commercialization in Phase III. Potential NASA Applications (Limit 1500 characters, approximately 150 words) The proposed effort is highly relevant to on-going and future NASA fixed wing projects, which involve innovative design concepts such as the Truss-Braced Wing, Blended Wing Body, and Supersonic Business Jet. The proposed work will offer a computational tool to the NASA designers for early exploration of design concepts that exploit the trade-off between the passive and active approaches for mitigating the potential aeroelastic problems associated with those configurations. Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words) The proposed discrete time state-space plant model generation can be applied to various flight vehicles including blended wing-bodies, joined wings, sub/supersonic transports, morphing aircraft, and similar revolutionary concepts being pursued. The proposed research will be needed for designing the next generation of civil and military aircraft to meet the stringent future performance goals.