SBIR-STTR Award

Controlled-Release Silver Biocide Device
Award last edited on: 3/28/2023

Sponsored Program
SBIR
Awarding Agency
NASA : JSC
Total Award Amount
$880,000
Award Phase
2
Solicitation Topic Code
H3.01
Principal Investigator
Clifford Jolly

Company Information

Environmental & Life Support Technology (AKA: ELS Technology )

6600 East Lookout Drive
Parker, CO 80138
   (303) 495-2090
   advisory@elstechnology.com
   www.elstechnology.com
Location: Single
Congr. District: 04
County: Douglas

Phase I

Contract Number: 80NSSC18P1956
Start Date: 7/27/2018    Completed: 2/15/2019
Phase I year
2018
Phase I Amount
$125,000
Silver and its compounds are of significant appeal for long-duration space missions, as they are capable of destroying or inhibiting the growth of microorganisms including bacteria, viruses, algae, molds and yeast, while exhibiting low toxicity to humans. The general pharmacological properties of silver are based upon the affinity of silver ion for biologically important moieties such as sulfhydryl, amino, imidazole, carboxyl and phosphate groups, and these multiple mechanisms are primarily responsible for its antimicrobial activity. Silver can impact a cell through multiple biochemical pathways, making it difficult for a cell to develop resistance to it, and it can be precisely and efficiently delivered using controlled-release technology. An engineering approach is detailed that optimizes the epidemiological features of silver compounds in conjunction with the chemical and mechanical features desirable for long-duration space missions. Phase I builds upon three distinct engineering approaches to produce flow-through silver biocide delivery devices based on controlled-release designs that have multiple decades of success in process industrial applications. Phase II will consist of design optimization and extensive parametric testing to support on-site NASA tests and long-duration flight requirements. Phase II will also investigate a regenerate approach to maintaining device activity over multi-year operational lifetimes. The long-term results and benefits to the manned space program are high antimicrobial effectiveness, low toxicity, simple integration and operation into advanced life support systems, maximum operational life, and superior mass/volume efficiency compared to any other possible approach. Potential NASA Applications This technology is expected to be baselined for all future advanced space missions including Lunar and Mars bases, and vehicles required for transport to those destinations. The option to retro-fit International Space Station with silver-based biocide delivery units is possible. Potential Non-NASA Applications The proposed technology has extensive commercial potential in the $3.2B global water treatment market for biocides and includes applications in aquaculture, ultrapure water, industrial process water, emergency and outdoor markets The low manufacturing cost of the proposed device will result in significant market potential for this NASA-sponsored technology. .

Phase II

Contract Number: 80NSSC19C0121
Start Date: 8/14/2019    Completed: 8/13/2021
Phase II year
2019
Phase II Amount
$755,000
Silver and its compounds are of significant appeal as biocides for long-duration space missions, as they are capable of destroying or inhibiting the growth of a wide spectrum of microorganisms including bacteria, viruses, algae, molds and yeast, while exhibiting low toxicity to humans. The general pharmacological properties of silver are based upon the affinity of silver ion for biologically important moieties such as sulfhydryl, amino, imidazole, carboxyl and phosphate groups, and these multiple mechanisms are primarily responsible for its antimicrobial activity. Silver can impact a cell through multiple biochemical pathways, making it difficult for a cell to develop resistance to it, and it can be precisely and efficiently delivered using controlled-release technology. An engineering approach is detailed that optimizes the epidemiological features of silver compounds in conjunction with the chemical and mechanical design features desirable for long-duration space missions. Phase I builds upon three distinct engineering approaches to produce flow-through silver biocide delivery devices based on controlled-release designs that have multiple decades of success in process industrial applications. Phase II will consist of design optimization and extensive parametric testing to support on-site NASA tests and long-duration flight requirements. Phase II will also investigate a regenerate approach to maintaining device activity over multi-year operational lifetimes, and advanced QA/QC protocols that will ensure effectiveness in very long term and remote applications on Mars and Lunar bases. The long-term results and benefits to the manned space program are high antimicrobial effectiveness, low toxicity, simple operation and integration into advanced life support systems, maximum operational life, and superior mass/volume efficiency compared to any other possible approach. Potential NASA Applications (Limit 1500 characters, approximately 150 words) This technology is expected to be baselined for all future advanced space missions including Lunar and Mars bases, and vehicles required for transport. Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words) Extensive commercial potential in the $3.2B global water treatment market for biocides Includes applications in aquaculture, ultrapure water, industrial process water, emergency and outdoor markets