SBIR-STTR Award

Low Cost Resin for Self-Healing High Temperature Fiber Reinforced Polymer Matrix Composites
Award last edited on: 2/27/2018

Sponsored Program
SBIR
Awarding Agency
NASA : GRC
Total Award Amount
$124,080
Award Phase
1
Solicitation Topic Code
A1.07
Principal Investigator
Timothy Shankwitz

Company Information

Harp Engineering LLC (AKA: Sodano Engineering)

3905 Varsity Drive Suite C
Ann Arbor, MI 48103
   (480) 205-1202
   info@harpengineering.com
   www.harpengineering.com
Location: Single
Congr. District: 12
County: Washtenaw

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2017
Phase I Amount
$124,080
Over the past few decades, the manufacturing processes and our knowledge base for predicting the bulk mechanical response of fiber reinforced composite materials has matured and opened the capability to design lightweight materials. The rapid development and progress of composites technology has been spawned by the high specific strength, stiffness, and toughness offered with respect to other engineering materials. However, the performance of a composite material is heavily influenced by the strength and toughness of the polymer matrix, which binds the high stiffness fibers into a cohesive element. Unfortunately, the highly cross-linked polymers necessary to achieve the high Tg required by propulsion systems are costly and prone to brittle fracture under even small elastic deformations. While the rigidity of the polymer is required for practical applications, the lack of resistance to crack propagation leads to damage prone materials. This proposed SBIR will develop a new low cost self-healing thermosetting polymer which exhibit high Tg (>550 F), high strength, stiffness and toughness from a room temperature low viscosity resin that allows processing without heating the polymer. The self-healing properties of polymer will yield increased reliability of the composite and reduced maintenance costs. HARP Engineering will formulate a polymer that meets or exceeds both the performance and cost metrics required by NASA through the use of multifunctional self-healing resins. This Phase I will perform mechanical testing of the resin at elevated temperatures and layup composites for ASTM testing to demonstrate the high specific strength, stiffness, and toughness compared to existing high temperature resins.

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
----
Phase II Amount
----