Silicon carbide (SiC) and other wide band-gap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultra-high power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high temperature device packaging technology. The objective of this proposed research is to develop a ultra-compact, hybrid power module packaging technology based on the use of double leadframes and direct leadframe-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450
oC. The Phase I research plan will include: 1) material selection; 2) electrical, mechanical, and thermal design of a half-bridge prototype module; 3) packaging process development using volume manufacturing processes; 4) stress and thermal modeling and analysis; 5) material characterization under high temperature and high temperature cycling; and 6) cost estimation and comparative analysis with competing technologies. The unique advantages of this innovative solution include very high current carrying capability, low package parasitic impedance, low thermo-mechanical stress at high temperatures, double-side cooling, and modularity for easy system-level integration. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art.