In this phase I SBIR program, a team led by Advanced Ceramics Research Inc. (ACR) propose a novel, low-cost manufacturing process for multi-functional polymer composite components with improved lightning strike mitigation and EMI shielding capabilities. The proposed program will develop and demonstrate a process for manufacturing complex-geometry composite parts with tailored lightning strike mitigation capability based on design requirements. This process is a natural extension of the ACR water-soluble tooling process for fabricating complex-geometry polymer composite parts as well as filament wound composite tanks. For the proposed phase I program, the ACR-led team will use a novel process to create a highly conductive surface capable of providing the necessary lightning strike protection and EMI shielding. The ACR team will evaluate the new approach with two different space qualified matrix polymers with graphite fibers and compare the surface conductivity with baseline composite systems.
Potential NASA Commercial Applications: ( Limit 1500 characters, approximately 150 words) The process could be used for making large-scale composites requiring enhanced lightning strike mitigation and EMI shielding capabilities for space and satellite structures.
Potential NON-NASA Commercial Applications: ( Limit 1500 characters, approximately 150 words) The technology could be used by commercial aircraft manufacturers as well as military contractors. NASA's technology taxonomy has been developed by the SBIR-STTR program to disseminate awareness of proposed and awarded R/R&D in the agency. It is a listing of over 100 technologies, sorted into broad categories, of interest to NASA.
Technology Taxonomy Mapping: Airframe Composites Multifunctional/Smart Materials