This SBIR project will demonstrate and develop a novel micro-pump capable of controlled and selective chemical transport. Phase I will create, characterize, and model a robust and readily fabricated low-power miniaturized pump achieving "forceless" dissolved ion transport compatible with microgravity conditions. The compact technology will be extremely versatile, low-cost, stable, easily tailorable, and readily scaleable to higher fluxes via structure duplication and application in parallel. The device will be physically stable, chemically inert, and pH insensitive while its small dimensions result in lower power consumption and reduced mass. The result will be a more versatile and general pump capable of moving a variety of drugs. Phase I will explore the pump performance, stability, and design optimization using selected ionic compounds as model transport subjects by running designed experiments exploring pump operations as a function of key pump structural and operation variables. This data will determine the controlling variables, their effects on the system performance, and will be utilized with first-principles system physics analysis to develop a pump operation model. This model will allow rapid technology configuration exploration, operation performance refinement, and will provide critical insights into preferred, better optimized, structures to be evaluated during Phase II.