SBIR-STTR Award

High Recovery, Low Fouling Reverse Osmosis Membrane Elements for Space Wastewater Reclamation
Award last edited on: 10/24/2007

Sponsored Program
SBIR
Awarding Agency
NASA : JSC
Total Award Amount
$699,136
Award Phase
2
Solicitation Topic Code
X3.02
Principal Investigator
Ian D Norris

Company Information

Santa Fe Science and Technology Inc (AKA: SFST)

3216 Richards Lane
Santa Fe, NM 87507
   (505) 474-3500
   mattes@sfst.net
   N/A
Location: Single
Congr. District: 03
County: Santa Fe

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2007
Phase I Amount
$99,163
With the expected extension of duration of the space missions outlined in NASA's Vision of Space Exploration, such as a manned mission to Mars or the establishment of a lunar base, the need to produce potable water from onboard wastewater streams in a closed-loop system becomes critical for life support and health of crew members. Reverse osmosis (RO) is a compact process that has proven its ability to remove inorganic and organic contaminants from space mission wastewater. The objective of this Phase I study is to ascertain whether composite hollow fiber membrane elements are a more efficient alternative to the current generation of spiral wound membrane elements for the reclamation of space mission wastewater. In particular, the use of low-energy composite hollow fiber membrane elements being developed at SFST for treating multi-component (both inorganic and organic contaminants) wastewater streams found aboard spacecraft will be investigated. The higher membrane surface area of these composite hollow fiber membrane elements enables the RO membrane element to have 30% higher water productivity at substantially higher single-pass recoveries (60-75% vs 10-20% for spiral wound elements). Furthermore, we will also investigate possible solutions to minimize fouling of these hollow fiber membranes by increasing the hydrophilicity of the membrane surface using a variety of surface modification techniques. Such hollow fiber membranes are expected to show better resistance to fouling by hydrophobic compounds, and thus these membranes will be less likely to be clogged by potential foulants. These improvements to the RO membrane element have the potential to decrease the mass, size and power requirements of the RO subsystem, and also decrease the size of the pre-treatment unit.

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
2008
Phase II Amount
$599,973
With the expected extension of duration of the space missions outlined in NASA's Vision of Space Exploration, such as a manned mission to Mars or the establishment of a lunar base, the need to produce potable water from onboard wastewater streams in a closed-loop system becomes critical for life support and health of crew membranes. Reverse osmosis (RO) is a compact process that has proven its ability to remove inorganic and organic contaminants from space mission wastewater. Our Phase I feasibility study indicate that the use of low-energy composite hollow fiber RO membranes developed at Santa Fe Science and Technology resulted in a 65-80% increase in the production of purified water compared to that obtained from the corresponding low-energy RO flat-sheet membrane without sacrificing the water quality of the permeate stream. Therefore, replacing existing spiral wound membrane elements in the RO subsystem with hollow fiber membrane elements will reduce the batch processing time or enable a lower feed pressure to be employed due to the use of higher productivity membrane elements. This will lower the overall power requirement for the RO subsystem. Phase 2 will be based on expanding the size of the membrane element in order to develop several working prototype membrane elements that can eventually be mounted in the RO subsystem of the closed-loop Integrated Water Purification System. Also during Phase 2, we will explore the use of hydrophilic polymeric coatings to determine whether it is possible to minimize the rate of membrane fouling due to the high concentration of organics in the wastewater feed stream.