SBIR-STTR Award

Inflatable Aerocapture Decelerators with Shape Morphing Trajectory Control
Award last edited on: 10/29/2004

Sponsored Program
SBIR
Awarding Agency
NASA
Total Award Amount
$820,000
Award Phase
2
Solicitation Topic Code
-----

Principal Investigator
Glen J Brown

Company Information

Vertigo Inc

20590 Cereal Street Suite 100 PO Box 117
Lake Elsinore, CA 92531
   (909) 674-0604
   gbrown@vertigo-inc.com
   www.vertigo-inc.com
Location: Multiple
Congr. District: 42
County: Riverside

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2004
Phase I Amount
$70,000
There are two distinct approaches to aerocapture: drag modulation and lift-vector control. All current research under the NASA ROSS In-Space Propulsion Technology Program is based on the drag modulation approach. However, a growing number of researchers are convinced that lift-vector control will be necessary, particularly for the more challenging planetary destinations such as Neptune. Vertigo will research concepts for spacecraft aerocapture using an innovative attached inflatable forebody decelerator that employs lift-vector control. Compared to drag modulation, lift-vector control expands the entry corridor to provide the needed margin for the total of the statistical uncertainties associated with navigation and atmospheric property estimation. Because aerocapture uses aerodynamic forces and not propulsion to decelerate, the amount of fuel required for a mission is greatly reduced. During Phase I Vertigo will define a concept for an attached inflatable forebody decelerator that incorporates lift-vector trajectory control. The results of the Phase I research will form the basis for a Phase II program in which we will perform a detailed evaluation of all aspects of the conceptual aerocapture system to converge on a single design concept for multiple aerocapture missions, and completely analyze the characteristics of spacecraft utilizing the selected aerocapture concepts.

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
2005
Phase II Amount
$750,000
___(NOTE: Note: no official Abstract exists of this Phase II projects. Abstract is modified by idi from relevant Phase I data. The specific Phase II work statement and objectives may differ)___ There are two distinct approaches to aerocapture: drag modulation and lift-vector control. All current research under the NASA ROSS In-Space Propulsion Technology Program is based on the drag modulation approach. However, a growing number of researchers are convinced that lift-vector control will be necessary, particularly for the more challenging planetary destinations such as Neptune. Vertigo will research concepts for spacecraft aerocapture using an innovative attached inflatable forebody decelerator that employs lift-vector control. Compared to drag modulation, lift-vector control expands the entry corridor to provide the needed margin for the total of the statistical uncertainties associated with navigation and atmospheric property estimation. Because aerocapture uses aerodynamic forces and not propulsion to decelerate, the amount of fuel required for a mission is greatly reduced. During Phase I Vertigo will define a concept for an attached inflatable forebody decelerator that incorporates lift-vector trajectory control. The results of the Phase I research will form the basis for a Phase II program in which we will perform a detailed evaluation of all aspects of the conceptual aerocapture system to converge on a single design concept for multiple aerocapture missions, and completely analyze the characteristics of spacecraft utilizing the selected aerocapture concepts.