Market penetration of battery electric and plug-in hybrid vehicles is limited by low energy density (range), low power (acceleration and charging), high cost, safety, and cycling/calendar life of the best commercially available rechargeable Li-ion batteries available today. New electrode materials are crucially needed to develop batteries capable of meeting/exceeding future DOE targets. The SiNode anode material, which is based on a novel Si- graphene composite, has high potential to overcome existing limitations on energy and power density while minimizing costs compared to alternative solutions. Solution-processed SiNode anodes use highly developed, relatively cheap components and are compatible with current manufacturing processes while providing superior performance-to-cost metrics compared with plasma deposition and other technologies. The Phase I objective is to validate SiNode materials in full-cell tests and optimize the composition and processing of these materials, with the goal of producing a battery with greater than 200 Wh/kg (double the energy density of current batteries) energy density after 1000 cycles. Phase II will focus on prototype development, scale-up materials synthesis, and mprehensive testing of batteries under real-world conditions. Successful development of these materials would double the energy density of a Li-ion battery, and significantly improve performance and market penetration of electric-propulsion vehicles, and expand their applications in military and portable electronic devices.