NanoElectronic Imaging, Inc. (NEI) is developing techniques for mapping signals in the transmission electron microscope (TEM) that are normally inaccessible. In this Phase I SBIR project, NEI will build on preliminary results to develop a quantitative, TEM-based topographic mapping technique with the potential for atomic resolution in all three spatial dimensions. This precision would be akin to an AFM-in-TEM. The technique is based on scanning TEM electron beam-induced current (STEM EBIC) imaging, which maps pixel-by-pixel the current generated in a TEM sample by the electron beam. This project will quantify the relationship between a new EBIC signal (previously discounted as ``noise) and topography. STEM EBIC has already been demonstrated at atomic resolution laterally, and preliminary results suggest that near-atomic resolution in height is possible. In this Phase I project, the new signal's signal-to-noise will be maximized, and its exact relationship to height will be quantifed by direct comparison to atomic force microscope (AFM) topographic maps. Finally, a statisticalanalysis of height precision, along with calibration procedures, will be developed. The reach goal of this project is to demonstrate topographic resolution comparable to, or even surpassing, NISTs traceable AFM.