Active cooling of HAZMAT and SWAT team members can significantly improve their performance in critical situations. However, current cooling systems are heavy, bulky, and don`t provide adequate cooling rates. By employing a new meso-channel adsorption bed using high capacity, sheet desiccants operated in a ambient-air cooled cross-flow mode, cooling capacities of 50 to 125 W can be generated with weights that are 2-5 times less than previous adsorption coolers or phase change materials such as ice. Depending upon the mode of operation, the cooler can produce dry air for sweat evaporation, chilled air, or chilled water. For this project, we will produce chilled water for circulation through a garment developed by Oklahoma State University under funding from the Department of Homeland Security`s Memorial Institute for Prevention of Terrorism (MIPT). This new cooler will be developed and integrated into the MIPT garment in Phase I. During Phase II, weight, performance and design optimization will be undertaken in addition to the development of a cost-effective manufacturing process. In addition to the first responder market, this cooling device has a number of commercial applications in sports, medicine, and extreme weather situations