Wide field-of-view imaging sensors with high spatial and spectral resolution ability have extensive applications in military and commercial fields. Current methodology of employing FLIR or video imaging sensors to search and acquire potential targets is time consuming since the operator must continuously scan the area of interest in a wide view field and zoom in a local area to acquire the target details. The format size of existing imaging arrays cannot support high-resolution imaging and wide field-of-view simultaneously. Furthermore, spectral information is also significant for applications such as spectral discrimination in target identification, camouflage detection, and environmental monitoring. Several prototype hyperspectral systems have been produced, each with its own strengths and weaknesses. There is a demand to develop an electronically controlled spectral- and spatial-foveated multi/hyperspectral sensor that is dynamically programmable to achieve variable spectral/spatial resolution in user defined regions of the image. New Span Opto-Technology Inc. proposes herein a compact optical configuration that is capable of simultaneously providing panoramic monitoring and high spatial and spectral resolution in areas of interest without mechanical scanning to facilitate instant hyperspectral imaging for improved surveillance and identification capability. Phase I will establish the model and demonstrate the feasibility of the proposed architecture.
Keywords: Foveated Imaging, Resolution, Multispectral, Hyperspectral, Electro-Optic, Sensor.