Phase II year
2011
(last award dollars: 2013)
Phase II Amount
$1,398,804
This document presents Optical Sciences Corporation's Phase II SBIR proposal for the development, fabrication, and demonstration of an infrared solar-lunar spectral simulator (SOLUSS) system using supercontinuum lasers as sources for space sensor exclusion testing. The all-optical fiber supercontinuum laser system will be capable of efficiently generating the high solar lunar radiance over a broadband spectrum from the midwave to the longwave infrared. The fiber optic design is the most compatible light delivery mechanism for cryogenic vacuum applications allowing precise control over stray light illumination and remote source operation minimizing environmental heating. The broadband illumination system projection optics will present the accurate solar and lunar angular extent, while providing a uniformly illuminated work area for the sensor under test. OSCs approach also incorporates hyperspectral modulation of the high flux output spectrum to support modeling the natural solar and lunar spectrums as well as more complex spectral signatures for Earth albedo, planets, stars, and various atmospheric transmission profiles.
Benefit: The emerging technology of supercontinuum lasers will be utilized as a stable and programmable infrared spectral illumination source. The Phase II research and development will result in a product establishing a new application for these emerging technologies. The solar lunar spectral simulator (SOLUSS) system will significantly improve the state-of-the-art in high radiance infrared testing in space sensor characterization and hardware-in-the-loop testing within typical laboratory and cryogenic-vacuum environments. The SOLUSS product, as well as the subsystem components, is marketable to the Department of Defense, National Aeronautics and Space Administration, Department of Energy, the defense and aerospace industry, and possible biomedical applications. These applications include infrared counter-measures; tunable infrared sources for spectroscopy and chemical detection; precision radiometric infrared illumination; active remote and security motion sensing; replace solar simulator systems using xeon arc-lamps; therapeutic, biological, and surgical programmable infrared illuminators; optical coherence tomography; ultrafast quantum cascade laser for ultrafast LWIR phenomena; and real-time optical metrology.
Keywords: Supercontinuum Laser, Solar Simulator, Infrared, Quantum Cascade Laser, Solar Spectrum, Lunar Spectrum, Simulation