The proposal outlines work and time tables associated with finalizing the development of wear model concepts developed in Phase I work to predict the wear of two materials sliding with respect to each other while being subjected to high velocities and/or high pressures. In parallel with this, a severe wear bench test fixture design will be finalized, built, and utilized to validate the severe wear model, which will be further developed to a state where it can be easily utilized to predict wear for a range of materials and material systems. The final result will represent a significant expansion of the capability to model, validate, and utilize technology to select material for severe wear applications.
Benefit: Severe wear applications exist in a range of components within various mechanical systems utilized in commercial devices. A few examples of these from the many existing are valve seats and valve faces in internal combustion engines, railroad wheels and track surfaces, and sliding surfaces in various lawn and cutting devices. Presently the selection and application of materials for severe wear applications is based on experience (which may not result in the use of an optimum material system) and/or trial and error. Both methods result in significant cost. An effective severe wear model and validating bench test fixture would result in substantial cost savings in the development of such products.
Keywords: hyper velocity track extreme wear resistance