Recent advent, and a significant progress made in the wide band gap semiconductor technology offer today a promise for a superior power amplifier. More specifically, emerging Gallium Nitrate (GaN) HEMT devices are shown to operate in extreme temperatures (~600C), exhibiting high breakdown voltages (~100V) and high current densities (~1.5A/mm). In order to meet these challenging technical requirements in a cost effective manner, F&H proposes to develop a GaN HEMT based MMIC power amplifier. During the Phase I of this program GaN HEMT device characteristics will be measured and modeled. Models derived will be synthesized with appropriate matching elements, and overall performance will be optimized in the 400 - 4000MHz band. The results will be empirically verified using discrete GaN HEMT devices in lumped element amplifier stages. Ultimately, the feasibility of a GaN HEMT based linear, high efficiency, power amplifier will be determined. In addition to meeting Air Force requirements for munitions, cost effective MMIC power amplifiers will benefit many other government and commercial applications to include LMDS, cellular (3G & 4G) and satellite applications. Vast markets associated with these applications will naturally lead to economy of scale pricing, in line with Air Force objectives.
Benefits: The proposed GaN HEMT power amplifier technology will support Air Forces need for longer range weapons communications. The MMIC embodiment and large commercial volumes associated with applications such as 3G & 4G cellular, LMDS, and mobile satellite terminals will lead to an economy of scale pricing, in line with the Air Force objectives.
Keywords: Wide band gap, power amplifiers, Linear power