SBIR-STTR Award

Titanium Matrix Composite Pressure Vessel
Award last edited on: 1/14/2021

Sponsored Program
SBIR
Awarding Agency
NASA : JPL
Total Award Amount
$699,988
Award Phase
2
Solicitation Topic Code
S2.02
Principal Investigator
Steve Spear

Company Information

FMW Composite Systems Inc

1200 West Benedum Industrial Drive
Bridgeport, WV 26330
   (304) 624-8028
   dmcbride@fmwcomposite.com
   www.fmwcomposite.com
Location: Single
Congr. District: 02
County: Harrison

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2007
Phase I Amount
$99,995
For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium components, also known as Titanium Matrix Composites (TMC), for the aerospace industry. These efforts have resulted in successfully flight qualifying three TMC components, including a piston rod used in the divergent exhaust nozzle actuator for the Pratt & Whitney F119 engine (F-22), and two exhaust nozzle actuator links for the GE F110 engine (F-16). TMC weight savings over the monolithic titanium and steel components being replaced typically varies from 35 to 45% depending upon the application load requirements. The relatively low density of TMC (10% lower than Titanium) combined with its excellent mechanical behavior, results in significantly higher specific static properties than conventional material systems. Additionally, creep resistance of TMC is dramatically enhanced over monolithic titanium due to the presence of the SiC fibers, which do not exhibit discernible creep at the temperature regime of interest. Currently, FMW is working with closely with the aerospace industry to develop TMC structural components for both Military and Commercial airframe applications. FMW proposes to use this same technology to work with the Jet Propulsion Lab to develop a TMC pressure vessel for the Venus Lander mission.

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
2008
Phase II Amount
$599,993
For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium components, also known as Titanium Matrix Composites (TMC), for the aerospace industry. These efforts have resulted in successfully flight qualifying three TMC components, including a piston rod used in the divergent exhaust nozzle actuator for the Pratt & Whitney F119 engine (F-22), and two exhaust nozzle actuator links for the GE F110 engine (F-16). TMC weight savings over the monolithic titanium and steel components being replaced typically varies from 35 to 45% depending upon the application load requirements. The relatively low density of TMC (10% lower than Titanium) combined with its excellent mechanical behavior, results in significantly higher specific static properties than conventional material systems. Additionally, creep resistance of TMC is dramatically enhanced over monolithic titanium due to the presence of the SiC fibers, which do not exhibit discernible creep at the temperature regime of interest. Currently, FMW is working with closely with the aerospace industry to develop TMC structural components for both Military and Commercial airframe applications. FMW proposes to use this same technology to work with the Jet Propulsion Lab to develop a TMC pressure vessel for the Venus Lander mission.



Potential NON-NASA Commercial Applications:
:

: Expansion of FMW's TMC manufacturing base to include compound curvature parts with integral monolithic attachment points will facilitate the use of TMC in a variety of potential applications. In addition to the targeted NASA application of pressure vessels for planetary probes and landers, other hot metallic structure applications requiring compound curvature would also benefit. Near leading edge surfaces of future hypersonic vehicles and exhaust path surface structure on military aircraft are potential applications that would benefit from the development of the manufacturing methods needed to produce TMC pressure vessels. NASA's technology taxonomy has been developed by the SBIR-STTR program to disseminate awareness of proposed and awarded R/R&D in the agency. It is a listing of over 100 technologies, sorted into broad categories, of interest to NASA.

Technology Taxonomy Mapping:
: Airframe Composites Launch and Flight Vehicle Metallics