SBIR-STTR Award

Biopsy Needle For Tumor Blood Flow Quantification
Award last edited on: 3/5/07

Sponsored Program
SBIR
Awarding Agency
NIH : NHLBI
Total Award Amount
$850,000
Award Phase
2
Solicitation Topic Code
-----

Principal Investigator
Gregory T Martin

Company Information

Hemedex Inc (AKA: Thermal Technologies Inc)

222 Third Street Suite 0123
Cambridge, MA 02142
   (617) 577-1759
   info@hemedex.com
   www.hemedex.com
Location: Single
Congr. District: 07
County: Middlesex

Phase I

Contract Number: 1R43HL061084-01
Start Date: 00/00/00    Completed: 00/00/00
Phase I year
1998
Phase I Amount
$100,000
This project seeks to incorporate blood flow (perfusion) sensors with core and aspiration biopsy needles. This device (needle, sensor, instrument and software) will serve as a research tool to investigate the relationship between tumor blood flow/oxygenation and anti-tumor therapy outcome. Since perfusion is a primary mediator of tissue oxygenation, and since oxygen acts as a modifier of the effectiveness of radiation therapy and chemotherapeutic agents, perfusion plays a role in the outcome of these therapies. During hyperthermia, higher therapeutic temperatures are achieved when tumor flow is low. Currently, there does not exist a tool to conveniently and routinely assess tumor perfusion in conjunction with anti-cancer therapy. In a research setting, the proposed device will help determine if such a perfusion/therapy outcome relationship exists. In clinical oncology, this device will provide information to assess the success of tumor blood flow modification agents, to help plan anti-tumor therapy for mammal effectiveness and to unambiguously ensure that the biopsy is taken from viable, non-necrotic tissue. This low cost device will also allow the perfusion data to be collected without increased patient morbidity nor increased risk for seeding the normal surrounding tissue with tumor cells over that of a standard biopsy procedure. The ability of the sensor to detect significantly sized vessel within1-2mm may also help navigate the biopsy needle through tissue to avoid these vessels in the biopsy path. Future versions of this device may incorporate other physiologic sensors relevant to clinical interest.Proposed Commercial Application:The proposed instrumented biopsy needle for the measurement of tumor blood flow has the potential to predict the efficacy of non-surgical anti-tumor therapy for hundreds of thousands of patients in the US each year. This device should find wide application in many research centers studying tumor blood flow in animal models and humans. A low-cost biopsy needle adjunct which quantifies tissue viability and tissue ischemia, and permits sensing of vessels in close proximity to the needle tip to aid in navigation, is expected to have great commercial potential.

Thesaurus Terms:
biomedical equipment development, biopsy, biosensor, blood flow measurement, clinical biomedical equipment, computer program /software, computer simulation, neoplasm /cancer blood supply blood circulation, blood flow, fine needle aspiration, heat, human therapy evaluation, mathematical model, neoplasm /cancer therapy, phantom model, temperature, thermometry bioengineering /biomedical engineering, ex vivo perfusion, laboratory rat

Phase II

Contract Number: 2R44HL061084-02
Start Date: 00/00/00    Completed: 00/00/00
Phase II year
2000
(last award dollars: 2001)
Phase II Amount
$750,000

This project seeks to incorporate blood flow (perfusion) sensors with core and aspiration biopsy needles. The feasibility of the integrated device was unambiguously demonstrated and validated in Phase I using the gold- standard microsphere technique in vivo. This device (needle, sensor, instrument and software) will serve as a tool to investigate the relationship between tumor blood flow/oxygenation and anti-tumor therapy outcome. Since perfusion is the carrier of oxygen which is a modifier of radiotherapy and chemotherapy, perfusion plays a significant role in the outcome of these therapies. There does not exist a tool to routinely assess tumor perfusion. This low cost device will provide information about the success of tumor blood flow modification agents, to help plan anti-tumor therapy for maximal effectiveness and to ensure that the biopsy is taken from diagnostic, non- necrotic tissue. Also it will collect perfusion data without increased patient morbidity nor increased risk for seeding the normal surrounding tissue with tumor cells over that of a standard biopsy procedure. In Phase II, biopsy perfusion probes will be designed and developed along with the controlling electronics and data analysis algorithms for use in a stand- alone computer/instrument. This entire system will be validated in a tumor model against the microsphere technique and the ability to modify tumor blood flow will be quantified. PROPOSED COMMERCIAL APPLICATION: The instrumented biopsy needle for the measurement of tumor blood flow has the potential to predict the efficacy of non-surgical anti-tumor therapy for hundreds of thousands of patients in the US each year. This device should find wide application in many research centers studying tumor blood flow in animal models and humans. A low-cost biopsy needle adjunct which quantifies tissue viability and tissue ischemia, and permits sensing of vessels in close proximity to the needle tip to aid in navigation, is expected to have great commercial potential.