SBIR-STTR Award

Low Cost, Large Scale Production of Biocidal Micropowder by a Reversed Arc, Plasma-Fluidized Bed Reactor
Award last edited on: 3/4/23

Sponsored Program
STTR
Awarding Agency
NSF
Total Award Amount
$255,966
Award Phase
1
Solicitation Topic Code
BT
Principal Investigator
Vladimir Gorokhovsky

Company Information

Nano-Product Engineering LLC

705 San Juan Drive
Lafayette, CO 80026
   (303) 735-6684
   N/A
   N/A

Research Institution

University of Colorado - Boulder

Phase I

Contract Number: 2136674
Start Date: 9/15/22    Completed: 8/31/23
Phase I year
2022
Phase I Amount
$255,966
The broader impact/commercial potential of this Small Business Technology Transfer (STTR) Phase I project is based on the improvement of respiratory equipment and personal protective equipment (PPE). Commercially available face masks, gowns, filter media and other PPE are contaminated through environmental exposure, posing a threat to healthcare personnel. The proposed solution is a high-surface-area antiviral/antimicrobial micropowder which can be applied to PPE surfaces. Improved protection from infections and reduced cross-contamination may result in fewer deaths, decreased healthcare costs, and increased economic productivity. The addressable global PPE market was $23 billion in 2020 and is expected to grow through 2028, while the global disposable face mask market was valued at $792 million in 2019, and the inclusion of other types of PPE increases this estimate further. The COVID-19 pandemic is driving the demand for these products, though the applicability of the proposed technology is not limited to COVID-19. The proposed product will be material that can modify the surfaces of fabrics with active antiviral properties, leading to improvements in health and safety. The customer base is expected to be healthcare personnel, pharmaceutical and food manufacturing facilities, the public, and manufacturers of PPE, medical devices, textiles, and filters.This STTR Phase I project proposes to improve the antiviral/antimicrobial properties of respiratory equipment and PPE, which is typically only passively protective, is difficult to decontaminate and re-use, and can lead to worker exposure during changing and handling. The proposed solution is a high-surface-area micropowder, coated with an antiviral/antimicrobial coating, which can be applied to PPE surfaces. Unlike current technologies, the particle size, morphology, surface area, and topography can all be tailored for specific biocidal activity. Additionally, powder shape and surface quality can be customized to enhance adhesion. The proposed project is to develop a prototype powder product formulation that allows easy application of antiviral (copper alloy) coated particles to fabrics and other materials. This technology is based on a fluidized-bed, plasma-enhanced deposition process for synthesizing unique core-shell micropowders of metal, ceramic, or highly-shaped nanoforms of carbon, including proven biocidal materials. The synthesized microparticles will have high surface-to-weight ratios making them better suited for capturing micro-organisms while also having improved bonding to surfaces of filter media and PPE materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Phase II

Contract Number: ----------
Start Date: 00/00/00    Completed: 00/00/00
Phase II year
----
Phase II Amount
----