
Development of Baseline Gene Expression-Based Response Predictor for Anti-TNFA Therapy in Patients with Inflammatory Bowel DiseasesAward last edited on: 3/3/2022
Sponsored Program
SBIRAwarding Agency
NIH : NIDDKTotal Award Amount
$251,371Award Phase
1Solicitation Topic Code
847Principal Investigator
Timothy E SweeneyCompany Information
Inflammatix Inc
863 Mitten Road Suite 104
Burlingame, CA 94010
Burlingame, CA 94010
(720) 201-6689 |
info@]inflammatix.com |
www.inflammatix.com |
Location: Single
Congr. District: 15
County: San Mateo
Congr. District: 15
County: San Mateo
Phase I
Contract Number: 1R43DK127578-01Start Date: 1/1/2021 Completed: 12/31/2021
Phase I year
2021Phase I Amount
$251,371Project Terms:
Age ; ages ; inhibitor/antagonist ; inhibitor ; Arthritis ; arthritic ; Autoimmune Diseases ; autoimmune condition ; autoimmune disorder ; Biology ; Biopsy ; Colonoscopy ; Decision Making ; gastrointestinal system ; Ailmentary System ; Alimentary System ; Digestive System ; Gastrointestinal Body System ; Gastrointestinal Organ System ; Disease ; Disorder ; Pharmaceutical Preparations ; Drugs ; Medication ; Pharmaceutic Preparations ; drug/agent ; Gene Expression ; Patient Care ; Patient Care Delivery ; Genes ; Health ; Healthcare Systems ; Health Care Systems ; Heterogeneity ; Infection ; Inflammation ; Inflammatory Bowel Diseases ; Inflammatory Bowel Disorder ; Lead ; Pb element ; heavy metal Pb ; heavy metal lead ; Liver ; hepatic body system ; hepatic organ system ; Lymphoma ; Germinoblastic Sarcoma ; Germinoblastoma ; Malignant Lymphoma ; Reticulolymphosarcoma ; Methods ; Morbidity - disease rate ; Morbidity ; mortality ; Mucous Membrane ; Mucosa ; Mucosal Tissue ; Patients ; Physicians ; Privatization ; Prospective Studies ; Quality of life ; QOL ; Research ; Risk ; Messenger RNA ; mRNA ; Signal Transduction ; Cell Communication and Signaling ; Cell Signaling ; Intracellular Communication and Signaling ; Signal Transduction Systems ; Signaling ; biological signal transduction ; Standardization ; Time ; Translating ; Tuberculosis ; M tuberculosis infection ; M. tb infection ; M. tuberculosis infection ; M.tb infection ; M.tuberculosis infection ; MTB infection ; Mycobacterium tuberculosis (MTB) infection ; Mycobacterium tuberculosis infection ; TB infection ; disseminated TB ; disseminated tuberculosis ; infection due to Mycobacterium tuberculosis ; tuberculosis infection ; tuberculous spondyloarthropathy ; cytokine ; Health Care Costs ; Health Costs ; Healthcare Costs ; Data Set ; Dataset ; base ; dosage ; Label ; improved ; Chronic ; Clinical ; Biological ; Logistic Regressions ; prognostic ; Training ; disability ; Individual ; Anti-Tumor Necrosis Factor Therapy ; anti-TNF therapy ; anti-TNF-alpha therapy ; Exposure to ; instrument ; Diagnostic ; machine learned ; Machine Learning ; Best Practice Analysis ; Benchmarking ; Robin ; Robin bird ; Performance ; Biopsy Sample ; Biopsy Specimen ; novel ; adjudicative process and procedure ; adjudication ; Predictive Factor ; (TNF)-α ; Cachectin ; Macrophage-Derived TNF ; Monocyte-Derived TNF ; TNF ; TNF A ; TNF Alpha ; TNF-α ; TNFA ; TNFα ; Tumor Necrosis Factor ; Tumor Necrosis Factor-alpha ; TNF gene ; Modeling ; Sampling ; response ; Meta-Analysis ; Address ; Data ; Economic Burden ; Validation ; Development ; developmental ; Immunomodulators ; IMiD ; Immune modulatory therapeutic ; immune modulating agents ; immune modulating drug ; immune modulating therapeutics ; immune modulators ; immune modulatory agents ; immune modulatory drugs ; immunomodulating agents ; immunomodulatory agents ; immunomodulatory drugs ; immunomodulatory therapeutics ; cost ; adjudicate ; Outcome ; Prevalence ; transcriptomics ; treatment response ; response to treatment ; therapeutic response ; genome-wide ; genome scale ; genomewide ; clinical practice ; predictive marker ; predictive biomarkers ; predictive molecular biomarker ; differential expression ; differentially expressed ; transcriptional differences ; clinically actionable ; predicting response ; prediction of response ; predictive response ; predictor of response ; response prediction ; genetic signature ; gene signatures ; response biomarker ; response markers ; responders and non-responders ; responders from non-responders ; responders or non-responders ; responders versus non-responders ; responders vs non-responders ; prognostic signature ; prognostic profile ; predictive signature ; clinically translatable ; Retrospective cohort ; clinical development ; service providers ; acute infection ; machine learning algorithm ; machine learned algorithm ; multilayer perceptron ; side effect ; infection risk ; Financial Hardship ; financial burden ; financial distress ; financial strain ; financial stress ; bioinformatics pipeline ; bio-informatics pipeline ; support vector machine ;
Phase II
Contract Number: ----------Start Date: 00/00/00 Completed: 00/00/00